

Responsive	Web	Design	by	Example

	

	

	

	

	

	

	

	

	

	

	

Embrace	responsive	design	with	HTML5,	CSS3,	JavaScript,	jQuery,
and	Bootstrap	4

	

	

	

	

	

	

	

	

	

	

	

Frahaan	Hussain

	

	

	

	

	

	

	

	

	

	

	

	

BIRMINGHAM	-	MUMBAI

Responsive	Web	Design	by
Example
Copyright	©	2017	Packt	Publishing	All	rights	reserved.	No	part	of	this	book
may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted	in	any	form	or	by
any	means,	without	the	prior	written	permission	of	the	publisher,	except	in	the
case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy
of	the	information	presented.	However,	the	information	contained	in	this	book	is
sold	without	warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt
Publishing,	and	its	dealers	and	distributors	will	be	held	liable	for	any	damages
caused	or	alleged	to	be	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of
the	companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of
capitals.	However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this
information.

First	published:	December	2017

Production	reference:	1061217

Published	by	Packt	Publishing	Ltd.
Livery	Place	35	Livery	Street	Birmingham
B3	2PB,	UK.

ISBN	978-1-78728-706-8

www.packtpub.com

http://www.packtpub.com

Credits

Author

Frahaan	Hussain

Copy	Editor

Safis	Editing

Reviewer

Sasan	Seydnejad

Project	Coordinator

Devanshi	Doshi

Commissioning	Editor

Ashwin	Nair

Proofreader

Safis	Editing

Acquisition	Editor

Larissa	Pinto

Indexer

Francy	Puthiry

Content	Development	Editor

Onkar	Wani

Graphics

Jason	Monteiro

Technical	Editor

Murtaza	Tinwala

Production	Coordinator

Arvindkumar	Gupta

	

About	the	Author
Frahaan	Hussain	is	a	young	programmer	who	contributes	to	the	community	in
many	ways,
this	book	being	the	latest.	He	runs	his	own	company,	Sonar	Systems,	which	is	a
world	leader	in	online	educational	content.	Sonar	Systems	has	created	many
open	source	frameworks	including	Cocos	Helper	and	PHP	Web	Framework	to
assist	developers	worldwide.	Plus	the	company	specializes	in	game	development
as	well	as	app	publishing.	He	has	a	degree	in	computer	games	programming	and
has	developed	many	websites	for	a	wide	range	of	clients,	making	him	fully
aware	of	the	development	lifecycle	and	the	practical	needs	of	the	developer.	He
has	worked	for	Accenture,	which	is	the	world's	largest	consultancy	firm.

	

	

	

	

About	the	Reviewer
Sasan	Seydnejad	has	more	than	a	decade	of	experience	in	web	UI	and	frontend
application	development	using	JavaScript,	CSS,	and	HTML	in	.NET	and
ASP.NET	environments.	He	specializes	in	modular	SPA	design	and
implementation,	responsive	mobile-friendly	user	interfaces,	AJAX,	client
architecture,	and	UX	design	using	HTML5,	CSS3,	and	their	related
technologies.	He	implements	framework-less	and	framework-based	applications
using	Node.js,	MongoDB,	Express.js,	and	Angular.	He's	also	the	author	of	the
book	Modular	Programming	with	JavaScript,	Packt.

	

	

	

www.PacktPub.com
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with
PDF	and	ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktP
ub.com	and	as	a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook
copy.	Get	in	touch	with	us	at	service@packtpub.com	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign
up	for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on
Packt	books	and	eBooks.

https://www.packtpub.com/mapt

Get	the	most	in-demand	software	skills	with	Mapt.	Mapt	gives	you	full	access	to
all	Packt	books	and	video	courses,	as	well	as	industry-leading	tools	to	help	you
plan	your	personal	development	and	advance	your	career.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

	

Customer	Feedback
Thanks	for	purchasing	this	Packt	book.	At	Packt,	quality	is	at	the	heart	of	our
editorial	process.	To	help	us	improve,	please	leave	us	an	honest	review	on	this
book's	Amazon	page	at	https://www.amazon.com/dp/B077T1FW6R.

If	you'd	like	to	join	our	team	of	regular	reviewers,	you	can	e-mail	us	at
customerreviews@packtpub.com.	We	award	our	regular	reviewers	with	free	eBooks	and
videos	in	exchange	for	their	valuable	feedback.	Help	us	be	relentless	in
improving	our	products!

	

	

https://www.amazon.com/dp/B077T1FW6R
https://www.amazon.com/dp/1787128474

Table	of	Contents
Preface

Who	this	book	is	for

What	this	book	covers

To	get	the	most	out	of	this	book

Download	the	example	code	files

Conventions	used

Reader	feedback

Customer	support

Errata

Piracy

Questions

1.	 What	is	Responsive	Web	Design?
Responsive	design	philosophy

Responsive	design	principles

Responsive	versus	adaptive

Breakpoints

Relative	units

Maximum	and	minimum	values

Nested	objects

Mobile	or	desktop	first

Bitmaps	versus	vectors

Responsive	grids	and	columns

Summary

2.	 What	is	Bootstrap,	Why	Do	We	Use	It?
Brief	history	of	Bootstrap

Why	use	Bootstrap?

Why	Bootstrap?

Bootstrap's	grid	system

Basics

Usage	and	examples

Equal	width	columns	example

Multi-row,	equal-width	columns	example

Multi-row,	equal-width	columns	without	multiple	rows	example

Differently	sized	columns

Differently	sized	columns	with	screen	size	restrictions

Mixing	and	matching

Vertical	alignment

Horizontal	alignment

Column	offsetting

Grid	wrap	up

Bootstrap	components

Summary

3.	 Reusable	Project	Template
What	is	a	reusable	project	template?

Development	environment	prerequisites

Creating	our	reusable	project	template

Simple	Bootstrap	example

Abstraction

Extending	the	header

Extending	the	footer

Extending	the	main	body

Troubleshooting

PHP	errors

CSS	not	applying

Summary

4.	 Creating	the	Introduction	Section
What	is	a	single-page	website?

Single-page	examples

Android	KitKat	promotional	homepage

GoldSquare

Anthony	Designer

Richman

Implementing	our	introduction	section

What	is	a	jumbotron?

Implementing	a	basic	jumbotron

Adding	an	image	to	the	jumbotron

Combining	text	and	images	in	a	jumbotron

Anchoring	a	section	to	the	navigation	bar

Animating	our	navigation	bar	anchor

Fixing	footer	visibility	and	the	location	problem

Placing	the	header	on	top

Changing	the	current	button	selected

Common	pitfalls

Navigation	bar	height	variance	on	mobile	devices

Navigation	bar	button	anchoring

Summary

5.	 Creating	a	Generic	Reusable	Single	Page	Section
Different	sections	in	single	page	websites

Single	page	section	examples

Contact	form

About	us

Projects/work

Opening	times

Implementing	our	generic	reusable	single	page	section

What	will	the	Our	Team	section	contain?

Creating	the	Our	Team	section	container

Anchoring	the	Team	section	to	the	navigation	bar

Adding	the	team's	pictures

Team	member	info	text

Team	member	social	links

Summary

6.	 Creating	a	Contact	Us	Section
Contact	Us	examples	for	single	page	websites

Richman

Bueno

This	also

Design	museum

Choice	screening

Implementing	the	Contact	Us	section

What	will	the	Contact	Us	section	contain?

Creating	the	Contact	Us	section	container

Anchoring	the	Contact	Us	section	to	the	navigation	bar

Adding	the	contact	form

Summary

7.	 Creating	the	Blog	Posts	Home	Page
Blog	examples

TechCrunch

Gawker

Microsoft	News

Johnny	Cupcakes

TESCO	Living

Setting	up	the	base	project

Removing	all	unnecessary	files

Refactoring	the	index.css	file

Refactoring	the	index.php	file

Refactoring	the	HEADER.php	snippet	file

Refactoring	the	index.js	file

What	will	our	blog	home	page	look	like?

Implementing	the	blog	home	page	section

Implementing	the	image	slider

Simple	image	slider

Adding	back	and	forward	buttons	to	the	slider

Carousel	indicators

Captioning	our	carousel

Implementing	the	blog	posts

Adding	cards

Summary

8.	 Creating	the	Blog	Posts	Page
Blog	post	page	examples

TechCrunch

Gawker

Microsoft	News

Johnny	Cupcakes

Tesco	Living

What	will	our	blog	post	page	consist	of?

What	does	the	post	content	consist	of?

What	does	the	popular	and	recommended	sidebar	consists	of?

Implementing	the	blog	post	page

Implementing	the	post's	main	content

Adding	the	blog	post	title	and	banner	image

Adding	the	snapshot	paragraph

Adding	the	body

More	useful	links

Implementing	the	sidebar

Further	extending	the	blog

Summary

9.	 Adding	a	Sidebar	to	the	Social	Network
Social	network	sidebar	examples

Facebook

Google+

YouTube

Minds

Myspace

What	will	our	social	network	sidebar	consist	of?

Implementing	the	sidebar

Implementing	the	burger	button

Implementing	the	sidebar	HTML	side

Implementing	the	sidebar	CSS	side

Summary

10.	 Creating	the	Home	page	in	Our	Social	Network
Social	network	timeline	examples

Facebook

Google+

YouTube

Twitter

Medium

What	will	our	social	network	timeline	consist	of?

Implementing	the	timeline

Implementing	the	input	section

Implementing	the	timeline	feed	section

Adding	the	user's	thumbnail	image

Adding	the	user's	name/username

Adding	the	post's	timestamp

Adding	the	post's	main	body

Going	forward	and	extending	the	timeline

Summary

11.	 Creating	the	User's	Profile	Page
Social	network	profile	examples

What	will	our	social	network	user	page	consist	of?

Implementing	the	jumbotron

Creating	a	basic	jumbotron	with	a	banner	image

Adding	the	overlay	text

Implementing	the	small	cards

Implementing	the	large	cards

Summary

12.	 Displaying	Thumbnails	of	Our	Photos
Photo	gallery	home	page	examples

Pinterest

9GAG

Google	Photos

GIPHY

Vent

What	will	our	photo	gallery	home	page	consist	of?

Implementing	the	thumbnails

Adding	the	home	page	title

Adding	the	picture	thumbnails

Adding	pagination

Summary

13.	 Opening	Images	Using	a	Light	Box
Light	box	examples

Pinterest

Google	Photos

Dan	Kennedy

Salter

Arild	Danielsen	Photographer

What	will	our	light	box	consist	of?

Implementing	the	light	box

Adding	a	simple	modal

Adding	an	image	to	the	modal

Making	the	modal	content	appear	dynamically

Summary

	

Preface
Responsive	Web	Design	by	Example	is	your	quick	and	easy	guide	to	learning
how	to	incorporate	responsiveness	into	your	website's	design	and	creation.	This
book	uses	the	concept	of	creating	a	varied	array	of	websites	to	teach	you	the
essentials	and	fundamentals	of	responsive	web	design.	While	also	teaching	about
good	practices	for	web	design	and	development	in	general.	This	book	will	teach
you	this	using	the	common	web	technologies	HTML,	CSS,	and	JavaScript,	while
also	leveraging	the	immensely	popular	responsive	framework	Bootstrap.

This	book	aims	to	be	your	one	stop	for	all	things	responsive	and	Bootstrap	in
web	design	and	development.	I	have	also	created	a	popular	YouTube	channel
which	provides	free	educational	videos,	including	on	web	development,	to
further	assist	you	on	your	development	journey:

https://www.youtube.com/user/sonarsystemslimited

	

	

	

https://www.youtube.com/user/sonarsystemslimited

Who	this	book	is	for
If	you	are	a	web	developer	interested	in	incorporating	responsive	web	design
into	your	websites,	then	this	book	is	for	you.	Familiarity	with	HTML5,	CSS3,
and	command	lines,	though	not	essential,	will	be	a	great	help	in	getting	the	most
out	of	this	book.

What	this	book	covers
Chapter	1,	What	Is	Responsive	Web	Design?,	explains	the	basics	of	responsiveness
in	web	design	and	its	importance	to	the	internet.

Chapter	2,	What	Is	Bootstrap,	Why	We	Use	It?,	explains	what	the	Bootstrap
framework	is	and	how	it	ties	into	the	world	of	responsive	web	design	and
development.

Chapter	3,	Reusable	Project	Template,	explains	the	importance	of	having	a
reusable	project	template	and	how	to	create	one	for	all	your	future	projects.

Chapter	4,	Creating	the	Introduction	Section,	shows	the	creation	of	the
introduction	section	for	the	first	project.

Chapter	5,	Creating	a	Generic	Reusable	Single	Page	Section,	shows	how	to	create
a	section	that	can	be	reused	for	different	topics.

Chapter	6,	Creating	a	Contact	Us	Section,	shows	how	to	create	a	section	that	will
enable	the	user	to	communicate	with	the	website's	creators.

Chapter	7,	Creating	the	Blog	Posts	Homepage,	begins	the	second	project	in	this
book.

Chapter	8,	Creating	the	Blog	Posts	Page,	covers	creating	a	page	to	display	the
blog	post	in	its	full	glory.

Chapter	9,	Adding	a	Sidebar	to	the	Social	Network,	shows	how	a	sidebar	can	be
implemented	and	used	to	enhance	your	website.

Chapter	10,	Creating	the	Homepage	in	Our	Social	Network,	implements	the	home
page	of	our	social	network	to	display	social	posts.

Chapter	11,	Creating	the	User's	Profile	Page,	adds	a	page	to	display	users,	profile
data.

Chapter	12,	Displaying	Thumbnails	of	Our	Photos,	starts	our	final	project,	creating

a	photo	gallery.

Chapter	13,	Opening	Images	Using	a	Light	Box,	shows	how	to	open	the	images
using	a	light	box	to	focus	on	a	particular	image.

To	get	the	most	out	of	this	book
You	will	need	a	computer	with	access	to	the	internet,	a	web	browser	and	local
web	server	for	testing,	and	your	favorite	IDE/text	editor	for	coding	the	projects
in.

	

Download	the	example	code	files
You	can	download	the	example	code	files	for	this	book	from	your	account	at	http
://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit	http://www.p
acktpub.com/support	and	register	to	have	the	files	emailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	at	http://www.packtpub.com.
2.	 Select	the	SUPPORT	tab.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box	and	follow	the	on-screen

instructions.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the
folder	using	the	latest	version	of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

	

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at	https://github.com/PacktPu
blishing/Responsive-Web-Design-by-Example-Third-Edition.	We	also	have	other	code
bundles	from	our	rich	catalog	of	books	and	videos	available	at	https://github.com/P
acktPublishing/.	Check	them	out!

	

	

	

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Responsive-Web-Design-by-Example-Third-Edition
https://github.com/PacktPublishing/

Conventions	used
There	are	a	number	of	text	conventions	used	throughout	this	book.

CodeInText:	Indicates	code	words	in	text,	database	table	names,	folder	names,
filenames,	file	extensions,	pathnames,	dummy	URLs,	user	input,	and	Twitter
handles.	Here	is	an	example:	"Common	bitmap	formats	include	.png	and	.jpg."

Bold:	Indicates	a	new	term,	an	important	word,	or	words	that	you	see	on	the
screen,	for	example,	in	menus	or	dialog	boxes,	also	appear	in	the	text	like	this.
Here	is	an	example:	"I	would	recommend	copying	the	code	from	our	GitHub
page,	as	the	CSS	and	JavaScript	files	are	stored	on	a	Content	Delivery	Network
(CDN)."

Warnings	or	important	notes	appear	in	a	box	like	this.

Tips	and	tricks	appear	like	this.

	

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think
about	this	book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us
as	it	helps	us	develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	feedback@packtpub.com,	and	mention	the
book's	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either
writing	or	contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

	

	

	

https://www.packtpub.com/books/info/packt/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things
to	help	you	to	get	the	most	from	your	purchase.

	

	

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,
mistakes	do	happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake
in	the	text	or	the	code—we	would	be	grateful	if	you	could	report	this	to	us.	By
doing	so,	you	can	save	other	readers	from	frustration	and	help	us	improve
subsequent	versions	of	this	book.	If	you	find	any	errata,	please	report	them	by
visiting	http://www.packtpub.com/submit-errata,	selecting	your	book,	clicking	on	the
Errata	Submission	Form	link,	and	entering	the	details	of	your	errata.	Once	your
errata	are	verified,	your	submission	will	be	accepted	and	the	errata	will	be
uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the	Errata
section	of	that	title.

To	view	the	previously	submitted	errata,	go	to	https://www.packtpub.com/books/content
/support	and	enter	the	name	of	the	book	in	the	search	field.	The	required
information	will	appear	under	the	Errata	section.

	

	

	

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

	

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all
media.	At	Packt,	we	take	the	protection	of	our	copyright	and	licenses	very
seriously.	If	you	come	across	any	illegal	copies	of	our	works	in	any	form	on	the
Internet,	please	provide	us	with	the	location	address	or	website	name
immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	copyright@packtpub.com	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you
valuable	content.

	

	

	

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us
at	questions@packtpub.com,	and	we	will	do	our	best	to	address	the	problem.

	

What	is	Responsive	Web	Design?
This	chapter	will	explain	what	Responsive	Web	Design	is,	how	it	benefits	our
websites,	and	the	core	concepts	that	it	consists	of.

The	topics	covered	in	this	chapter	are	as	follows:

Responsive	design	philosophy
Responsive	design	principles
Responsive	grid	and	columns
Smooth	user	experience
Understanding	responsive	grid	systems
Design	methodologies
User-friendly	websites
Elegant	mobile	experience
Adaptive	design	and	development

	

	

Responsive	design	philosophy
There	was	a	time	when	most	web	surfing	occurred	on	a	computer	with	a
standard-sized/ratio	monitor.	It	was	more	than	adequate	to	create	websites	with	a
non	responsive	layout	in	mind.	But	over	the	last	10	years	there	has	been	an
exponential	boom	of	new	devices	in	a	plethora	of	form	factors,	from	mobile
phones,	tablets,	watches	and	a	wide	range	of	screen	sizes.	This	growth	has
created	a	huge	fragmentation	problem,	so	creating	websites	with	a	single	layout
is	no	longer	acceptable.	A	website	with	a	lot	of	content	that	works	great	on
desktops	doesn't	work	very	well	on	a	mobile	device	that	has	a	significantly
smaller	screen.	Such	content	is	unreadable,	forcing	the	user	to	zoom	in	and	out
constantly.	One	might	try	making	everything	bigger	so	it	looks	good	on	mobiles,
but	then	on	a	desktop,	the	content	doesn't	take	advantage	of	the	immense	real
estate	offered	by	bigger	screens.

Responsive	Web	Design	is	a	method	that	allows	the	design	to	respond	based	on
the	user's	input	and	environment,	and	thus	based	on	the	size	of	the	screen,	the
device,	and	its	orientation.	This	philosophy	blends	elements	of	flexible	grids	and
layouts,	images,	and	media	queries	in	CSS.

Enter	Responsive	Web	Design.	This	alleviates	this	problem	by	allowing
developers	and	designers	to	create	websites	that	adapt	to	all	screen	sizes/ratios.
There	are	various	approaches	that	different	websites	take,	but	the	core	concept	is
illustrated	in	the	following	figure:	

The	preceding	figure	shows	how	the	same	website's	layout	can	be	adapted	to	suit

different	devices.	On	the	desktop	there	is	a	lot	more	real	estate,	so	the	content	is
bigger	and	more	can	fit	on	a	single	row.	But,	as	the	screen	size	shrinks	and	its
orientation	changes,	the	content	readjusts	itself	to	accommodate	this	change.
This	provides	a	seamless	and	elegant	experience	for	the	user	on	all	form	factors.
If	you	look	closely	at	the	preceding	figure	and	at	modern	websites,	you	will	see	a
grid	that	the	content	conforms	to.	The	grid	is	used	to	lay	out	the	content	of	a
website,	and	both	of	these	elements	go	hand	in	hand.	This	grid	system	is	one	of
the	most	important	aspects	of	how	Responsive	Web	Design	works,	and	this	will
be	covered	in	depth	very	soon.

Responsive	design	principles
This	section	will	cover	the	main	principles	behind	designing	responsive
websites.	Though	these	aren't	set	in	stone	and	will	change	over	time,	they	will
provide	a	great	foundation.

	

Responsive	versus	adaptive
Responsive	designs	constantly	change	website	layouts	depending	on	their	size
and	orientation.	A	single	pixel	resize	will	tend	to	have	an	effect	on	the	layout,
usually	not	by	a	lot.

Adaptive	schemes,	on	the	other	hand,	have	preset	layouts,	which	are	loaded
depending	on	the	size	of	the	screen.	This	technique	doesn't	look	as	fluid	and
seamless	as	do	responsive	designs.

Modern-day	Responsive	Web	Design	usually	incorporates	both	methods.	Set
layouts	will	be	provided,	as	can	be	seen	in	the	previous	figure.	But	any	changes
made	to	a	website's	size	will	have	an	impact	in	real	time	through	responsive
scaling.

	

	

	

Breakpoints
Breakpoints	are	points	at	which	a	website's	layout	is	no	longer	fit	for	the	screen
size,	device,	and/or	orientation,	and	we	are	able	to	use	different	and	unique
layouts	to	accommodate	the	various	changes	that	can	occur	to	screens.	When
these	points	occur,	the	current	layout	is	switched	for	a	more	suitable	layout.	For
example,	a	mobile	device	in	portrait	mode	will	not	effectively	be	able	to	use	a
layout	that	is	designed	for	a	widescreen	desktop	display;	this	just	isn't	possible.
However,	by	using	breakpoints	a	single	website	can	serve	many	screen
variations	whilst	making	the	website	feel	like	it	was	designed	with	the	user's
current	screen,	device,	and/or	orientation	in	mind.	This	does	not	occur	when
reloading	the	web	page,	but	content	moves	around	dynamically	and	is	scaled
accordingly.	Without	breakpoints	the	website	would	appear	with	the	same	layout
on	all	form	factors	and	browser	sizes,	which	using	the	example	we	just
mentioned,	would	not	be	fit	for	purpose.

These	breakpoints	usually	occur	when	the	width	of	the	browser	changes	and	falls
into	the	category	of	another	more	appropriate	layout.

There	are	a	few	fundamentals	that	should	be	mentioned	regarding	the	responsive
philosophy	of	Responsive	Web	Design:

Screen	resolution:	This	is	immensely	influential	in	responsive	design.	The
first	thought	for	many	designers	is	to	design	based	on	the	resolution	of	the
screen.	But	modern-day	phones	have	resolutions	of	1080p	and	beyond,
which	for	the	most	part	is	still	the	de	facto	standard	for	desktops	with	some
exceptions	in	4K	and	ultrawide	displays.	This	would	prevent	us	from	fully
targeting	all	devices,	as	there	is	so	much	crossover	in	resolutions	between
devices.	That	is	the	reason	why	pixel	density	is	very	important	when
deciding	which	layout	should	be	used	as	a	5-inch	1080p	mobile	display	will
be	cramming	the	pixels	in	a	lot	closer	than	a	32-inch	1080p	display.	They
both	have	the	same	resolution	for	the	mobile	device	and	they	have	a
significantly	higher	pixel	density,	which	helps	distinguish	between	the
device	types.	The	viewport	should	also	be	taken	into	consideration,	which
is	the	user's	visible	area	of	a	web	page.	This	would	allow	us	to	rearrange

content	based	on	how	much	content	should	be	displayed.
Media	queries:	These	are	amazing	facets	within	CSS	that	allow	us	to
actually	detect	changes	in	a	screen	such	as	its	size	and	an	event	device	type.
These	are	the	things	used	to	specify	code	for	a	specific	layout,	such	as	a
mobile	or	desktop	display.	You	can	think	of	media	queries	as	conditional
statements,	just	as	an	"if"	statement	would	only	run	a	piece	of	code	if	the
condition	was	true.	A	media	query	is	the	same,	its	far	more	limited,	but	as
are	many	things	in	CSS.

I'm	positive	you	will	have	used	a	website	and	noticed	that	it	looks	different	on	a
computer	compared	to	a	mobile	phone,	or	even	a	tablet.	This	is	thanks	to	the	use
of	breakpoints,	which	are	very	similar	to	conditional	statements	in	other
languages	such	as	C++.	When	a	certain	condition	is	met,	such	as	screen	size
range,	or,	change	in	form	factor,	different	CSS	is	applied	to	provide	a	better-
suited	layout.

	

Relative	units
Let's	cover	what	relative	and	static	units	are.	Relative	units	take	into	account	the
other	content	and	more	specifically	the	content's	size,	whereas	static	units	do	not
and	have	an	absolute	value	regardless	of	the	amount	of	content.

If	relative	units	are	not	used	then	static	units	would	be	used,	which	essentially
lays	the	content	using	fixed	units	such	as	pixels.	With	this	method,	a	box	with	a
width	of	400px	on	an	800px	screen	would	take	half	the	width.	But,	if	the	screen
size	changes	to	300px,	the	box	will	now	be	partially	off	screen.	Again,	this
would	not	provide	the	reader	with	that	seamless	experience,	which	we	aim	to
provide.

The	units	simply	display	your	content	relative	to	everything	else,	or,	more
specifically,	the	screen	size	or	viewport.	This	allows	us,	as	creators,	to	display
content	consistently.	Take	the	previous	example,	if	we	would	like	to	display	the
box	at	half	the	screen	width,	on	an	800px	screen	the	box	would	be	400px	wide,
and	on	a	600px	screen	the	box	would	be	300px	wide.	Using	percentages	we	can
set	the	width	to	50%,	which	forces	the	box	to	always	be	half	the	width	of	its
parent	container,	making	its	size	relative	to	the	rest	of	the	page's	content.

	

	

	

	

Maximum	and	minimum	values
Scaling	our	content	is	greatly	dependent	on	the	screen	size.	But	with	screens
such	as	ultrawide	monitors,	scaling	the	content	may	make	it	too	big,	or	even	too
small,	on	mobile	devices.	Using	maximum	and	minimum	values,	we	are	able	to
set	upper	and	lower	limits	providing	us	with	readable	and	clear	results.

	

	

	

Nested	objects
If	we	displayed	every	object	individually,	we	would	have	to	make	them	all	adjust
accordingly,	but	nesting	allows	us	to	wrap	elements	using	containers.	Nested
objects	are	like	a	paragraph	tag,	as	they	contain	text,	and	any	changes	made	to
the	paragraph	tag,	such	as	its	position	or	color,	also	affect	its	contents.	Objects
nested	within	each	other	are	affected	by	any	change	made	to	their	parent
containers.	An	object	can	be	anything	from	text	and	images,	to	HTML
tags/elements.	Take	a	look	at	the	following	example:	

In	this	example,	there	are	four	elements—a	div,	paragraph,	span,	and	image	tag.
The	paragraph,	span,	and	image	tags	are	nested	within	the	div	tag.	If	the	div	tag's
maximum	width	and	background	color	were	changed,	this	would	affect	all	its
child	objects/tags.	But	if	we	were	to	make	a	change	to	the	paragraph	tag,	such	as
changing	its	text	color,	this	would	not	affect	any	other	sibling	tags	or	its	parent
tag.	It	would	only	have	an	affect	on	its	contents/objects.

So,	for	example,	if	a	container	is	moved	or	scaled,	the	content	within	the
container	is	also	updated.	This	is	where	pixels	come	in	use.	You	may	not	always
want	a	container	to	be	displayed	10%	from	the	right	as,	on	mobile	devices,	10%
equates	to	a	lot	of	real	estate	potentially	being	wasted;	you	could	specify	50px
instead	for	example.

	

Mobile	or	desktop	first
You	can	design	a	website	from	a	small	screen	such	as	a	phone	and	scale	it	up	or
go	the	other	way	round	and	design	it	with	a	large	screen	in	mind.	There	is
actually	no	right	or	wrong	answer.	Depending	on	the	intended	target	audience
and	the	website's	purpose,	this	will	become	clear	to	you.	Usually,	considering
both	angles	at	the	same	time	is	the	best	route	to	go	down.	Most	responsive
frameworks	on	the	market	have	been	designed	with	a	mobile-first	philosophy,
but	that	doesn't	mean	you	cannot	use	it	for	a	desktop-first	design;	it	is	on	you	as
the	designer	to	decide	how	content	should	be	displayed.

	

	

	

	

Bitmaps	versus	vectors
Bitmaps	are	great	for	images	with	a	lot	of	detail,	such	as	backgrounds	and
usually	logos.	Common	bitmap	formats	include	.png	and	.jpg.	But	these	images
can	be	large	in	file	size	and	require	more	bandwidth	and	time	to	load.	On
desktop	devices	this	isn't	too	much	of	a	problem,	but	on	mobile	devices	that	are
heavily	reliant	on	cellular	services	that	don't	always	provide	unlimited	data,	this
can	be	problematic.	Also,	when	scaling	bitmaps,	there	is	a	loss	in	quality,	which
results	in	jagged	and	blurry	images.

Vectors,	on	the	other	hand,	are	small	in	size	and	don't	lose	quality	when	scaling.
I	know	you'll	be	tempted	to	scream,	"Hail	vectors!"	at	this	book,	but	they	do
have	their	drawbacks.	They	are	only	useful	for	simple	content	such	as	icons.
Also	some	older	browsers	do	not	fully	support	vectors.

Again	there	is	no	"right	choice";	depending	on	the	content	to	be	displayed,
bitmaps	or	vectors	should	be	used.

	

	

	

Responsive	grids	and	columns
The	grid	system	is	one	of	the	universal	concepts	of	Responsive	Web	Design,
regardless	of	the	framework	a	website	is	built	upon.	To	put	it	simply,	websites
are	split	into	rows	and	columns,	and	if	an	object/element	occupies	half	the
number	of	columns,	it	will	always	occupy	that	many	regardless	of	the	screen's
size.	So	an	element	that	occupies	3	of	the	12	rows	will	occupy	25%	of	the	width
of	its	parent	container,	hence	providing	responsive	design.	This	is	great	for	small
variations	in	screen	sizes,	but	when	a	website	is	viewed	on	platforms	varying
from	desktops	to	mobiles,	then	breakpoints	are	introduced	as	covered	previously.
Though	there	is	no	fixed	number	of	columns	that	a	responsive	website	should
have,	12	is	a	common	number	used	by	some	of	the	most	popular	and	widespread
frameworks.	A	framework	in	this	context	is	anything	built	on	top	of	the	built-in
web	features.	JavaScript	is	a	web	feature,	but	jQuery	is	a	framework	built	on	top
of	that	to	allow	easier	manipulation	of	the	website	using	prewritten
libraries/code.	Though	a	framework	isn't	absolutely	necessary,	neither	is	using	an
off-the-shelf	web	browser.	You	could	create	your	own,	but	it	would	be	an
immense	waste	of	time,	and	the	case	for	using	a	responsive	framework	is
essentially	the	same.	The	following	is	an	example	of	a	basic	responsive	grid:	

Rows	allow	us	as	developers	to	group	content	together,	though	there	will	be	a
fixed	number	of	columns,	not	all	columns	have	to	be	filled	to	go	to	the	next	row.

A	new	row	can	be	used	explicitly,	as	can	be	seen	in	the	following	example:

This	may	be	different	to	how	you	have	developed	websites	in	the	past,	but	if
there	is	anything	you	are	unsure	about	don’t	worry,	as	things	will	become	clearer
when	we	start	working	on	projects	in	future	chapters.

Summary
In	this	chapter,	we	covered	what	responsive	design	is	and	the	philosophies	that
make	it	so	great	and	essential	to	the	future	of	the	web.	The	next	chapter	will
cover	what	Bootstrap	is	and	how	it	relates	to	Responsive	Web	Design.

	

What	is	Bootstrap,	Why	Do	We
Use	It?
This	chapter	will	explain	what	Bootstrap	is,	and	how	it	relates	to	Responsive
Web	Design	and	its	immense	importance	to	the	web	industry.

The	topics	covered	in	this	chapter	are	as	follows:

Bootstrap's	history
Bootstrap's	syntax
Bootstrap's	grid	system
Bootstrap's	responsive	philosophy
Bootstrap's	components

	

	

Brief	history	of	Bootstrap
In	2011,	Bootstrap	was	created	by	two	Twitter	employees	(Mark	Otto	and	Jacob
Thornton)	to	address	the	issue	of	fragmentation	of	internal	tools/platforms.
Bootstrap	aimed	to	provide	consistency	among	different	web	applications	that
were	internally	developed	to	reduce	redundancy	and	increase	adaptability	and
reusability.	As	digital	creators,	we	should	always	aim	to	make	our	applications
adaptable	and	reusable.	This	will	help	keep	coherency	between	applications	and
speed	up	processes,	as	we	won't	need	to	create	basic	foundations	over	and	over
again.	For	example,	a	website	might	have	a	login	system,	which	is	not	unique	to
one	project,	but	prevalent	in	many,	and	therefore	reusing	already	existing	code
for	this	makes	sense.

After	a	few	months,	Twitter	Blueprint	was	born	and	provided	a	way	to
document	and	share	common	design	patterns/assets	within	Twitter.	This	alone	is
an	amazing	feature	that	would	make	Bootstrap	an	extremely	useful	framework	to
use.	Then	more	internal	developers	began	contributing	towards	the	Bootstrap
project	as	part	of	Hackathon	week,	and	the	project	just	exploded.	Not	long	after,
it	was	renamed	"Bootstrap"	as	we	know	and	love	it	today,	and	it	was	released	as
an	open	source	project	to	the	community.	A	core	team	led	by	Mark	and	Jacob
along	with	a	passionate	and	growing	community	of	developers,	helped	to
accelerate	the	growth	of	Bootstrap.

In	early	2012	after	a	lot	of	contributions	from	the	core	team	and	the	community,
Bootstrap	2	was	born.	It	had	come	a	long	way	from	being	a	framework	for
providing	internal	consistency	among	Twitter	tools.	It	was	now	a	responsive
framework	using	a	12-column	grid	system.	It	also	provided	inbuilt	support	for
Glyphicons	and	a	plethora	of	other	new	components.

In	2013,	Bootstrap	3	was	released	with	a	mobile-first	approach	to	design	and	a
fully	redesigned	set	of	components	using	the	immensely	popular	flat	design.
This	is	the	version	many	websites	use	today	and	it	is	very	suitable	for	most
developers.	Bootstrap	4	is	in	active	development	with	Alpha	v6	being	the	latest
stable	release,	as	of	writing	this	book.

	

Why	use	Bootstrap?
You	probably	have	a	reasonable	idea	of	why	you	would	use	Bootstrap	for
developing	websites	after	reading	its	history,	but	there	is	more	to	it.	Simply	put,
it	provides	the	following:

A	responsive	grid,	using	the	design	philosophies	mentioned	in	the	first
chapter.
Cross	browser	compatibility,	using	Normalize.css	to	ensure	elements	render
consistently	across	all	browsers,	(not	a	very	easy	task,	I	might	add,
speaking	from	experience).	You	might	be	wondering	why	it's	difficult.
Simply	put,	there	are	several	different	browsers,	each	with	a	plethora	of
versions,	which	all	render	content	differently.	I've	seen	some	browsers	put	a
border	around	an	image	by	default,	whereas	some	browsers	don't.	This	type
of	inconsistency	will	prove	to	be	very	bad	for	user	experience.
A	plethora	of	UI	components,	by	providing	polished	UI	components	as
developers,	we	are	going	to	bring	our	creativity	to	life	in	a	much	easier	way.
These	components	usually	allow	a	team	to	increase	their	development
velocity,	since	they	start	from	a	solid	tried	and	tested	foundation.	They	not
only	provide	good	design,	but	they	are	usually	implemented	using	best
practices	in	terms	of	performance	and	accessibility.
A	very	compact	size	with	only	a	small	footprint.
Really	fast	to	develop	with,	it	doesn't	get	in	the	way	like	many	other
frameworks,	but	allows	your	creativity	to	shine	through.
Extremely	easy	to	start	using	Bootstrap	in	your	website.
Bundles	common	JavaScript	plugins	such	as	jQuery.
Excellent	documentation.
Customizable,	allowing	you	to	remove	any	unnecessary	features.
An	amazing	community	that	is	always	ready,	24/7,	to	help.

	

	

	

Why	Bootstrap?
It's	pretty	clear	now	that	Bootstrap	is	an	amazing	framework	and	that	it	will	help
provide	consistency	among	our	projects	and	aid	cross	browser	responsive
design.	But	why	use	Bootstrap	over	other	frameworks?	There	are	endless
responsive	frameworks	like	Bootstrap	out	there,	such	as	Foundation,	W3.CSS,
and	Skeleton,	to	mention	a	few.

Bootstrap,	however,	was	one	of	the	first	responsive	frameworks	and	is	by	far	the
most	developed	with	an	ever-growing	community.	It	has	documentation	online,
both	official	and	unofficial,	and	other	frameworks	aren't	able	to	boast	about	their
resources	as	much	as	Bootstrap	can.	Constantly	being	updated,	it	makes	it	the
right	choice	for	any	website	developer.

Also,	most	JavaScript	frameworks,	such	as	Angular	and	React,	have	bindings	to
Bootstrap	components	that	will	reduce	the	amount	of	code	and	time	spent
binding	it	with	another	framework.	It	can	also	be	used	with	tools	such	as	SASS
to	customize	the	components	provided	further.

	

	

	

Bootstrap's	grid	system
This	section	will	cover	what	a	responsive	grid	system	is	and	how	it	is
implemented	with	Bootstrap.

First,	let's	cover	what	a	grid	system	is	in	general,	regardless	of	the	framework
you	choose	to	develop	your	amazing	website	on	top	of.	Without	using	a
framework,	CSS	would	be	used	to	implement	the	grid.	However,	a	framework
like	Bootstrap	handles	all	of	the	CSS	side	and	provides	us	with	easy-to-use
classes.	A	responsive	grid	system	is	composed	of	two	main	elements:

Columns:	These	are	the	horizontal	containers	for	storing	content	on	a
single	row
Rows:	These	are	top	level	containers	for	storing	columns

Your	website	will	have	at	least	one	row,	but	it	can	have	more.	Each	row	can
contain	containers	that	span	a	set	number	of	columns.	For	example,	if	the	grid
system	had	100	columns,	then	a	container	that	spans	50	would	be	half	the	width
of	the	browser	and/or	parent	element.

	

Basics
Bootstrap's	grid	system	consists	of	12	columns	that	can	be	used	to	display
content.	Bootstrap	also	uses	containers	(methods	for	storing	the	website's
content),	rows,	and	columns	to	aid	in	the	layout	and	alignment	of	the	web	page's
content.	All	of	these	employ	HTML	classes	for	usage	and	will	be	explained	very
shortly.	The	purpose	of	these	are	as	follows:

Columns	are	used	to	group	snippets	of	the	website's	content,	and	they	in
turn	allow	manipulation	without	disrupting	the	internal	content's	flow.
There	are	two	different	types	of	columns:

.container:	Used	for	a	fixed	width,	which	is	set	by	Bootstrap

.container	fluid:	Used	for	full	width	to	span	the	entire	browser
Rows	are	used	to	horizontally	group	columns,	which	aids	with	lining	up	the
site's	content	properly:

.row:	There	is	only	one	type	of	row

Columns	mentioned	previously	are	a	way	of	setting	how	wide	content
should	be.	The	following	are	the	classes	used	for	columns:

.col-xs:	Designed	to	display	the	content	only	on	extra-small	screens

Max	container	width—none
Triggered	when	browser	width	is	below	576px

.col-sm:	Designed	to	display	the	content	only	on	small	screens

Max	container	width—540px
Triggered	when	browser	width	is	above	or	equal	to	576px	and
below	768px

.col-md:	Designed	to	display	the	content	only	on	medium	screens

Max	container	width—720px

Triggered	when	browser	width	is	above	or	equal	to	768	and
below	992px

.col-lg:	Designed	to	display	the	content	only	on	large	screens

Max	container	width—960px
Triggered	when	browser	width	is	above	or	equal	to	992px	and
below	1200px

.col-xl:	Designed	to	display	the	content	only	on	extra-large	screens

Max	container	width—1140px
Triggered	when	browser	width	is	above	or	equal	to	1200px

.col:	Designed	to	be	triggered	on	all	screen	sizes

To	set	a	column's	width,	we	simply	append	an	integer	ranging	from	1	to	12	at	the
end	of	the	class,	like	so:

.col-6:	Spans	six	columns	on	all	screen	sizes

.col-md-6:	Spans	six	columns	only	on	extra-small	screen	sizes

Later	in	this	chapter,	we	will	run	through	some	examples	of	how	to	use	these
features	and	how	they	work	together.

	

	

	

	

Usage	and	examples
To	use	the	aforementioned	features,	the	structure	is	as	follows:

div	with	container	class
div	with	row	class

div	with	column	class
Content

div	with	column	class
Content

div	with	column	class
Content

div	with	column	class
Content

div	with	row	class
div	with	column	class

Content
div	with	column	class

Content
div	with	column	class

Content
div	with	column	class

Content
div	with	column	class

Content
div	with	column	class

Content

The	following	examples	may	have	some	CSS	styling	applied;	this	does	not	affect
their	usage.

	

	

	

Equal	width	columns	example
We	will	start	off	with	a	simple	example	that	consists	of	one	row	and	three	equal
columns	on	all	screen	sizes.

The	following	code	produces	the	aforementioned	result:	

You	maybe	scratching	your	head	in	regards	to	the	column	classes,	as	they	have
no	numbers	appended.	This	is	an	amazing	feature	that	will	come	in	useful	very
often.	It	allows	us,	as	web	developers,	to	add	columns	easily,	without	having	to
update	the	numbers,	if	the	width,	of	the	columns	are	equal.	In	this	example,	there
are	three	columns,	which	means	the	three	divs	equally	span	their	thirds	of	the
row.

Multi-row,	equal-width	columns
example
Now	let's	extend	the	previous	example	to	multiple	rows:

The	following	code	produces	the	aforementioned	result:

As	you	can	see,	by	adding	a	new	row,	the	columns	automatically	go	to	the	next
row.	This	is	extremely	useful	for	grouping	content	together.

Multi-row,	equal-width	columns
without	multiple	rows	example
The	title	of	this	example	may	seem	confusing,	but	you	need	to	read	it	correctly.
We	will	now	cover	creating	multiple	rows	using	only	a	single	row	class.	This	can
be	achieved	with	the	help	of	a	display	utility	class	called	w-100.

The	following	code	produces	the	aforementioned	result:	

The	example	shows	multiple	row	divs	are	not	required	for	multiple	rows.	But	the
result	isn't	exactly	identical,	as	there	is	no	gap	between	the	rows.	This	is	useful
for	separating	content	that	is	still	similar.	For	example,	on	a	social	network,	it	is
common	to	have	posts,	and	each	post	will	contain	information	such	as	its	date,
title,	description,	and	so	on.	Each	post	could	be	its	own	row,	but	within	the	post,
the	individual	pieces	of	information	could	be	separated	using	this	class.

Differently	sized	columns
Up	until	now	we	have	only	created	rows	with	equal-width	columns.	These	are
useful,	but	not	as	useful	as	being	able	to	set	individual	sizes.	As	mentioned	in	the
Bootstrap	grid	system	section,	we	can	easily	change	the	column	width	by
appending	a	number	ranging	from	1-12	at	the	end	of	the	col	class.

The	following	code	produces	the	aforementioned	result:	

As	you	can	see,	setting	the	explicit	width	of	a	column	is	very	easy,	but	this
applies	the	width	to	all	screen	sizes.	You	may	want	it	only	to	be	applied	on
certain	screen	sizes.	The	next	section	will	cover	this.

Differently	sized	columns	with
screen	size	restrictions
Let's	use	the	previous	example	and	expand	it	to	change	size	responsively	on
differently	sized	screens.	On	extra-large	screens,	the	grid	will	look	like	the

following:	

On	all	other	screen	sizes	it	will	appear	with	equal-width	columns:	

The	following	code	produces	the	aforementioned	result:

Now	we	are	beginning	to	use	breakpoints	that	provide	a	way	of	creating	multiple
layouts	with	minimal	extra	code	to	make	use	of	the	available	real	estate	fully.

Mixing	and	matching
We	aren't	restricted	to	choosing	only	one	break-point,	we	are	able	to	set
breakpoints	for	all	the	available	screen	sizes.	The	following	figures	illustrate	all
screen	sizes,	from	extra-small	to	extra-large:	Extra-small:	

Small:	

Medium:	

Large:	

Extra-large:	

The	following	code	produces	the	aforementioned	results:	

It	isn't	necessary	for	all	divs	to	have	the	same	breakpoints	or	to	have	breakpoints
at	all.

Vertical	alignment
The	previous	examples	provide	functionality	for	use	cases,	but	sometimes	the
need	may	arise	to	align	objects	vertically.	This	could	technically	be	done	with
empty	divs,	but	this	wouldn't	be	a	very	elegant	solution.	Instead	there	are
alignment	classes	to	help	with	this	as	can	be	seen	here:	

As	we	can	see,	you	can	align	rows	vertically	in	one	of	three	positions.	The
following	code	produces	the	aforementioned	result:	

We	aren't	restricted	to	only	aligning	rows,	we	can	easily	align	columns	relative
to	each	other,	as	is	demonstrated	here:	

The	following	code	produces	the	aforementioned	result:	

Horizontal	alignment
As	we	vertically	aligned	content	in	the	previous	section,	we	will	now	cover	how
easy	it	is	to	align	content	horizontally.	The	following	figures	show	the	results	of
horizontal	alignment:

The	following	code	produces	the	aforementioned	result:

Column	offsetting
The	need	may	arise	to	position	content	with	a	slight	offset.	If	the	content	isn't
centered	or	at	the	start	or	end,	this	can	become	problematic,	but	using	column
offsetting,	we	can	overcome	this	issue.	Simply	add	an	offset	class,	with	the
screen	size	to	target,	and	how	many	columns	(1-12)	the	content	should	be	offset
by,	as	can	be	seen	in	the	following	example:	

The	following	code	produces	the	aforementioned	result:	

	

Grid	wrap	up
The	examples	covered	so	far	will	suffice	for	most	websites.	There	are	more
techniques	for	manipulating	the	grid,	which	can	be	found	on	Bootstrap's	website	
https://v4-alpha.getbootstrap.com/layout/grid/

If	you	tried	any	of	the	examples,	you	may	have	noticed	cascading	from	smaller
screen-size	classes	to	larger	screen-size	classes.	This	occurs	when	there	are	no
explicit	classes	set	for	a	certain	screen	size.

	

	

	

https://v4-alpha.getbootstrap.com/layout/grid/

	

Bootstrap	components
There	is	a	plethora	of	amazing	components	that	are	provided	with	Bootstrap,
thus	saving	time	creating	them	from	scratch.	There	are	components	for
dropdowns,	buttons,	images,	and	so	much	more.

The	usage	is	very	similar	to	that	of	the	grid	system,	and	the	same	HTML
elements	we	know	and	love	are	used	with	CSS	classes	to	modify	and	display
Bootstrap	constructs.	I	won't	go	over	every	component	that	Bootstrap	offers	as
that	would	require	an	encyclopedia	in	itself,	and	many	of	the	commonly	used
ones	will	be	covered	in	future	chapters	through	example	projects.	I	would
however	recommend	taking	a	look	at	some	of	the	components	on	Bootstrap's
website	https://v4-alpha.getbootstrap.com/components/alerts/

	

	

	

https://v4-alpha.getbootstrap.com/components/alerts/

Summary
In	this	chapter,	we	covered	what	Bootstrap	is	and	how	its	grid	system	will	help
us	create	our	responsive	websites.	The	next	chapter	will	cover	setting	up	a
project	template	that	can	be	reused	for	all	our	future	projects.

	

Reusable	Project	Template
In	this	chapter,	we	will	cover	how	to	create	a	template	for	all	future	responsive
websites,	thus	saving	time	and	money.	The	topics	covered	in	this	chapter	are	as
follows:

Structured	website	template	creation
Header	templating
Footer	templating
Creating	the	main	body	of	websites	for	all	future	projects
Project	structure	overview

	

	

What	is	a	reusable	project
template?
Most	websites	have	a	specific	layout	that	is	generic	across	most,	if	not	all,	of	its
pages.	This	is	true	for	responsive	and	non-responsive	websites.	Usually,	a
website	has	a	header	and	a	footer	that	incorporate	the	website's	brand	and	style
and	is	used	on	all	pages.	Some	websites	also	have	a	sidebar	that	is	used	on	all
pages.

Let's	take	a	look	at	an	example	to	illustrate	this,	let's	look	at	YouTube.	On	the
home	page,	a	header	and	video	recommendations	appear:	

Scrolling	to	the	bottom	shows	the	footer	with	useful	links	after	all	of	the	video

recommendations:	

Now	let's	open	a	video	and	see	how	the	top	of	the	page	looks:	

As	you	can	see,	the	header	is	identical	and	only	the	page's	main	content	is
different.	Now	let's	look	at	the	footer	at	the	bottom	of	the	page:	

All	of	the	preceding	screenshots	are	from	YouTube

The	footer	is	also	the	same	on	both	pages.	I	would	recommend	looking	at	more
websites	and	seeing	the	similarities	between	the	different	pages.

If	we	were	to	create	a	website	without	a	reusable	project	template,	we	would
have	to	duplicate	the	header	and	footer	code	for	every	single	page.	Also,	any
changes	such	as	a	new	logo	in	the	header	would	require	every	single	page	to	be
updated,	thus	requiring	more	unnecessary	time	and	creating	an	immense	amount
of	redundancy.	This	can	be	very	problematic	when	creating	larger	websites.	I
speak	from	experience,	as	many	years	ago,	before	I	discovered	the	art	of
reusable	project	templates,	I	would	literally	add	hundreds	of	lines	of	code	on
every	single	page	and	have	to	update	all	pages	every	single	time	a	change	was
made.

Here	is	a	list	of	some	of	the	many	benefits	of	using	a	reusable	project	structure:

Save	time	rewriting	code	again	and	again	and	again
Keep	all	code	consistent	and	up	to	date
Leads	to	leaner	development	times,	always	a	bonus
Can	be	reused	outside	of	a	single	project,	especially	when	other	projects
have	similarities,	thus	immensely	reducing	the	amount	of	time	spent
producing	more	projects,	which	will	lead	to	increased	productivity

Sounds	amazing,	let's	talk	about	reusability	in	terms	of	a	real-world	scenario.
Imagine	that	we	are	building	a	house.	This	encompasses	a	wide	variety	of	tasks
from	mathematics,	to	engineering,	all	the	way	down	to	brick	laying.	Imagine	if
we	had	to	reinvent	all	of	that	every	single	time,	the	house	would	never	get	built.

Let's	go	even	deeper.	Take	brick	laying:	we	don't	create	the	bricks,	we	buy	them.
The	creator	of	the	bricks	doesn't	reinvent	the	process	behind	constructing	the
bricks	every	single	time,	they	reuse	a	template	again	and	again	and	again.	This
immensely	reduces	the	time	and	money	required	to	produce	a	brick,	which	all
leads	to	the	house	being	built	faster.

The	concept	of	a	reusable	project	template	for	websites	is	very	similar	to	the
preceding	example.	The	code	that	is	to	be	reused	on	many	pages	is	abstracted
into	separate	files,	such	as	a	header	and	a	footer	file,	which	follows	the
component-based	methodology.	This	allows	us	to	easily	reuse	components
instead	of	rewriting	them	every	single	time.	All	that	needs	to	be	done	on	all	the
pages	is	to	include	the	header	and	footer	files.	By	including	the	abstracted
components	we	immediately,	with	zero	effort,	have	the	design	and	functionality
repeated.	Any	changes	made	to	these	files	propagate	throughout	all	the	pages
they	are	included	in.	The	following	is	some	pseudo	code	for	this:

Include	HEADER_FILE
Main	content	for	page
Include	FOOTER_FILE

Development	environment
prerequisites
For	normal	frontend-only	websites,	we	start	by	creating	the	code	files	and
running	them	directly	in	a	browser	for	testing.	But	this	doesn't	allow	us	to	create
a	reusable	project	template,	as	we	discussed	previously.	To	create	a	template	like
this,	we	need	a	backend	server-side	language.	I	have	chosen	to	use	PHP,	but	any
language	will	suffice,	and	this	template	will	be	easy	to	adapt.	If	you	do	have	any
queries	regarding	this,	feel	free	to	post	them	on	my	education	platform,	at	www.son
arlearning.co.uk.

Even	though	this	book	is	a	frontend	web	development	book,	we	will	cover	some
server-side	code,	but	it	isn't	crucial	to	responsive	web	design	and	will	be	very
minimal.	It	will	simply	speed	up	the	process	of	creating	multiple	pages	and
projects.

To	use	a	backend	language	we	will	require	a	server,	not	necessarily	a	physical
server	that	we	have	bought	or	a	rented	server	from	a	hosting	provider.	We	are
able	to	set	up	a	local	server	for	free,	which	is	fantastic.	I	will	be	using	XAMPP	(
https://www.apachefriends.org/index.html)	as	it	is	cross-platform	and	works	with
macOS,	Windows,	and	Linux.	XAMPP	supports	PHP	and	Perl,	however	setting
up	a	server	for	other	languages	is	extremely	simple	with	the	appropriate	tools.
The	following	link	can	be	used	to	set	up	a	server:	http://www.sonarlearning.co.uk/cou
rsepage.php?topic=&course=php7newfeatures&videoindex=12836#12836

For	more	information	regarding	setting	up	XAMPP	take	a	look	at
the	following	website	http://www.tutorialspoint.com/articles/run-a-php-pr
ogram-in-xampp-server

Once	you	have	set	up	your	server,	you	are	ready	to	create	your	reusable	project
template.

http://www.sonarlearning.co.uk
https://www.apachefriends.org/index.html
http://www.sonarlearning.co.uk/coursepage.php?topic=&course=php7newfeatures&videoindex=12836#12836
http://www.tutorialspoint.com/articles/run-a-php-program-in-xampp-server

Creating	our	reusable	project
template
Now	we	will	finally	write	some	code;	I	hear	everyone	rejoicing!	This	section
will	cover	the	creation	of	our	reusable	project	template	and	what	forms	the
design	decisions	of	its	features.

Simple	Bootstrap	example
Let's	create	a	basic	Bootstrap	project	before	we	begin	abstraction	to	turn	it	into	a
reusable	project	template.	I	would	recommend	creating	a	folder	for	your	project
on	your	server	to	store	all	your	project's	files.	This	will	help	you	immensely
when	creating	more	projects,	as	everything	will	be	separated	and	it	will	reduce
the	problem	in	the	future	of	having	too	many	files	to	manage.

Create	a	file	called	index.html,	which	will	be	the	main	entry	point	for	our	website,
and	put	the	following	code	inside	of	it.	For	this	section,	I	would	recommend
copying	the	code	from	our	GitHub	page,	as	the	CSS	and	JavaScript	files	are
stored	on	a	Content	Delivery	Network	(CDN),	which	simply	is	an	external
server	that	feeds	content	to	different	sites	and	the	links	can	be	very	long.	The
GitHub	link	is	https://github.com/PacktPublishing/Responsive-Web-Design-by-Example

Running	the	index.html	file	will	produce	the	following	result:

https://github.com/PacktPublishing/Responsive-Web-Design-by-Example

Our	website	doesn't	look	very	impressive,	but	it	is	now	set	up	to	use	Bootstrap,
which	provides	us	with	a	plethora	of	features,	from	the	grid	to	various	CSS
components	that	were	discussed	in	the	previous	chapter.

Abstraction
Now	we	have	a	Bootstrap	project	set	up,	we	can	begin	abstracting.	If	we	don't,
we	would	need	to	duplicate	this	code	every	single	time	a	new	page	is	to	be
created,	and	even	more	code	will	need	to	be	duplicated	once	we	have	created	a
header	and	a	footer,	thus	leading	to	immense	redundancy.	Let's	check	out	the
steps	required	for	abstraction:

1.	 The	first	thing	we	need	to	do	is	rename	index.html	to	index.php:

At	this	point,	we	can	no	longer	run	the	website	by	double-clicking
the	file,	we	need	a	server,	which	we	have	already	set	up.

2.	 Next,	create	a	folder	called	SNIPPETS,	with	two	PHP	files	inside	of	it	called
HEADER.php	and	FOOTER.php.	Our	project	folder	will	look	like	the	following
screenshot:

3.	 The	HEADER.php	file	will	contain	all	the	code	that	includes	style	sheets,	sets
metadata,	and	other	generic	header	code.	Remove	the	following	code	from
the	index.php	file	and	put	it	into	the	HEADER.php	file:

4.	 Now,	let's	move	onto	the	FOOTER.php.	This	will	contain	all	the	code	at	the

bottom	of	the	page,	such	as	the	visual	footer	and	JavaScript	include	lines.
Remove	the	following	code	from	the	index.php	file	and	put	it	into	the
FOOTER.php	file:

5.	 Now	the	index.php	file	will	contain	the	following	code:

6.	 And	if	run,	it	will	produce	the	following:

At	first	glance,	the	result	looks	identical	to	before,	but	if	you	were	to	try	and	use
any	Bootstrap	code	or	code	from	any	other	libraries	such	as	jQuery,	it	would	not
work.	This	is	because	that	file	no	longer	has	the	code	it	did	before,	but	we	can
easily	solve	this	by	adding	the	HEADER.php	and	FOOTER.php	files	into	our	index.php
code.	Update	the	index.php	file	to	look	like	the	following:	

The	require_once	lines	simply	get	the	code	from	a	particular	file	and	insert	it	when
this	method	is	called.	This	allows	us	to	create	many	files	without	duplicating	the
header	and	footer	code.	Also,	any	changes	made	to	the	header	or	footer	files	will
propagate	throughout	our	website	as	there	is	a	single	code	base,	thus	immensely
reducing	redundancy.

The	website	will	produce	the	same	result	visually,	but	it	is	set	up	for	Bootstrap
and	any	other	library	we	include.

All	of	a	page's	main	code	should	go	between	the	two	require_once	lines,	as	can	be
seen	in	the	preceding	screenshot.	We	now	have	a	reusable	project	template	that
we	can	use	for	all	pages	and	projects,	and	easily	extend	when	the	need	for	more
features	arises.

Extending	the	header
We	have	abstracted	the	header	code	that	sets	up	the	headers	for	Bootstrap.	This
doesn't	visually	provide	anything	such	as	a	navigation	bar	that	most	websites
have	universally	across	all	of	their	pages.

This	section	will	cover	creating	a	navigation	bar	that	consists	of	the	following:

Logo
Buttons
Collapsible	navigation
Search	bar

Add	the	following	code	to	the	bottom	of	the	HEADER.php	file:	

This	will	produce	the	following	result:	

On	mobile	devices,	the	following	layout	is	displayed:	

I	will	leave	it	to	you	to	unveil	the	surprise	that	is	the	collapsible	menu	when	the
button	on	the	right	is	pressed.

There	is	quite	a	lot	of	code,	so	let's	go	through	it	line	by	line:

Line	1	creates	a	navigation	bar	with	some	basic	settings	using	CSS	classes.
The	inverse	classes	refer	to	the	navigation	bar	being	dark;	as	an	extra	task
try	removing	them.	We	also	set	at	which	breakpoint	it	should	show	a
collapsed	menu,	that	is,	mobile.	We	have	chosen	medium,	but	it	can	easily
be	changed.	Try	setting	it	to	extra	small.
Lines	2-4	create	the	burger	button	that	appears	on	smaller	screens	to	open
the	collapsed	navigation	bar	with	some	basic	generic	properties.
Lines	6-8	create	the	logo,	which	can	easily	be	replaced	with	your	own
image	be	it	stored	locally	or	on	a	CDN.	The	image	is	enclosed	in	anchor	tag
to	navigate	back	to	the	home	page	when	clicked.	This	will	become	useful
when	we	have	multiple	pages.
Lines	10-25	create	the	menu	that	appears	within	the	navigation	bar	and	also
sets	it	to	be	collapsible.	Using	an	unordered	list,	we	created	two	regular	text
buttons	that	can	be	used	to	navigate	to	different	parts	of	our	website.	Then,
using	a	form,	we	created	a	search	bar	and	a	button	for	activating	the	search.

This	book	is	about	frontend	responsive	web	design,	so	this	will	not
be	functional	but	can	be	hooked	up	to	a	database	using	your
chosen	server-side	language.

Finally,	line	26	closes	the	navigation	bar	element.

As	usual,	I	would	recommend	experimenting	with	the	code	and	changing	or
removing	classes	to	see	how	everything	works	and	to	understand	it	in	more
depth.

Extending	the	footer
As	we	did	with	the	header,	it's	time	to	extend	the	footer	to	show	visual	elements
that	can	be	used	for	navigation	and	for	providing	useful	information	to	the	user
across	pages.

Add	the	following	code	to	the	top	of	the	FOOTER.php	file:	

This	will	produce	the	following	result:	

The	footer	has	one	problem,	it's	at	the	bottom,	after	the	content.	It	should	be
situated/anchored	at	the	bottom	of	the	page,	regardless	of	the	amount	of	content
on	the	page.	To	achieve	this	we	need	some	CSS,	so	create	a	CSS	folder	inside	your
project's	root	directory	and	create	an	index.css	file	inside	of	it,	like	so:	

Put	the	following	code	inside	the	index.css	file:	

This	code	will	ensure	our	footer	remains	at	the	bottom	and	is	100%	of	the
browser's	width.	Before	this	styling	is	applied	we	need	to	include	the	CSS	file
inside	of	our	HEADER.php,	like	so:	

Now	our	website	will	look	like	this:	

Extending	the	main	body
At	the	moment	we	have	some	simple	text	inside	of	our	index.php	file,	which
serves	as	the	body	of	the	page.	The	code	doesn't	conform	to	Bootstrap	guidelines
of	using	containers	and	rows,	which	we	covered	in	the	previous	section.	Update
the	index.php	file	with	the	following	code:	

This	code	produces	the	following	result:	

It	may	look	like	the	only	thing	that	has	changed	is	that	the	text	is	now	indented.
However,	behind	the	scenes	we	are	taking	advantage	of	Bootstrap's	grid	system,
and	this	allows	us	to	use	responsive	columns.

Bootstrap	recommends	not	to	nest	containers	and	only	have	a
single	container	on	a	page	unless	you	need	regular	and	fluid
containers.

Troubleshooting
We	have	covered	a	lot	of	content,	here	are	some	common	pitfalls	you	may
encounter.

PHP	errors
If	you	come	across	any	PHP	errors	at	this	stage,	they	will	most	likely	be
referring	to	the	require	lines.	Just	make	sure	the	directory	and	the	file	you	are
trying	to	use	exist	and	are	named	correctly.	Any	errors	referring	to	this	will	look
like	this:

CSS	not	applying
If	no	CSS	is	being	applied,	this	is	most	likely	due	to	the	code	incorrectly
referring	to	the	file.	This	can	happen	for	the	following	reasons:

Incorrect	file/directory	name
Incorrect	file/directory	location
File/directory	not	created

Summary
In	this	chapter,	we	have	covered	how	to	set	up	Bootstrap	and	abstract	common
functionality	to	create	a	reusable	project	template	for	all	of	our	projects.	The
next	chapter	will	cover	starting	our	first	project:	creating	a	single-page	portfolio
website.

	

Creating	the	Introduction	Section
In	this	chapter,	we	will	create	the	first	section	of	our	single-page	portfolio
website,	which	will	be	an	introduction	section.	This	section	will	act	as	the	first
point	of	call	for	the	user	as	they	load	up	the	website.

The	topics	covered	in	this	chapter	are	as	follows:

Anchoring	this	section	to	the	overall	single-page	website	design	flow
Responsive	full-width	image
Bootstrap	jumbotron
Bootstrap/HTML	headers
Bootstrap/HTML	subheaders
Debugging	and	testing	responsive	design

	

	

	

What	is	a	single-page	website?
You	may	be	wondering	what	a	single-page	website	is	and	whether	you	have	ever
used	one.	Simply	put,	it's	a	website	with	only	a	single	page	split	into	sections,
using	buttons	to	anchor	to	the	different	sections.	These	sections	usually	contain
little	information;	they	are	essentially	the	equivalent	of	separate	pages	in	a	larger
website.

Single-page	websites	are	commonly	used	for	the	following	types	of	websites:

Portfolio
Landing	page
Coming	soon	page
App	page
Simple	gallery
Product	page

	

	

Single-page	examples
Let's	take	a	look	at	some	awesome	single-page	examples.

	

Android	KitKat	promotional
homepage
When	scrolling,	elements	animate	and	scroll	across	the	screen.	There	is	a	set	of
navigation	buttons	in	the	form	of	circles	on	the	right-hand	side.	Clicking	one	of
these	makes	the	website	scroll	to	that	section;	it	doesn't	jump,	but	scrolls	to	it,
which	provides	a	more	seamless	experience	for	the	user.	This	isn't	necessary,	but
it	improves	the	UX.

Here's	the	website	link:	https://www.kitkat.com/android/#/home

	

	

	

https://www.kitkat.com/android/#/home

GoldSquare
This	is	a	simpler	example	with	little	animation.	When	a	button	is	pressed	on	the
navigation	bar,	the	page	simply	scrolls	to	the	desired	section.	This	is	simple	yet
effective:

The	website	link	is:	http://www.goldsquare.co

http://www.goldsquare.co/

Anthony	Designer
This	website	takes	a	very	unique	approach	to	navigation,	with	a	heavy	use	of
animations.	Instead	of	scrolling	vertically,	the	site	uses	cards	and	scrolls
horizontally,	but	with	a	system	of	navigation,	using	horizontal	buttons:

The	website	link	is:	http://www.anthonydesigner.com/

http://www.anthonydesigner.com/

Richman
This	website	provides	some	simple	animation	along	with	anchoring,	thus
presenting	a	wonderful	and	elegant	website:

The	website	link	for	this	is:	http://richman-kcm.com/

http://richman-kcm.com/

	

Implementing	our	introduction
section
We	will	now	create	an	introduction	section	for	our	single-page	portfolio	website.
This	can	be	easily	modified	with	the	content	that	your	site	needs.

The	introduction	section,	as	the	name	suggests,	is	used	to	introduce	the	viewer	to
the	rest	of	the	website.	With	the	use	of	images	and	text,	the	viewer	will	be	able
to	understand	the	subject	matter	of	the	website.

	

	

	

What	is	a	jumbotron?
A	jumbotron	may	sound	like	a	robot	from	an	upcoming	Transformers	movie,
but	it	is	a	really	cool	feature	of	Bootstrap.	Bootstrap	borrowed	the	term	from	the
big	displays	that	are	used	at	sporting	events,	as	it	provides	a	means	for
prominently	displaying	information:

http://assets.sbnation.com/assets/2481507/rizzosign.jpg

A	jumbotron	in	Bootstrap	is	actually	a	very	simple	concept;	it	is	essentially	a

HTML	element	used	to	contain	text	and	images	in	a	large,	poster-like	fashion.

Unfortunately,	our	site	won't	have	one	of	them,	but	you	can	add	the	image	into
the	jumbotron.

Implementing	a	basic	jumbotron
Let's	start	off	by	adding	a	simple	jumbotron	so	that	we	can	see	how	it	works.
Add	the	following	code	to	the	index.php	file	so	that	it	looks	like	the	following:	

You	have	most	likely	noticed	that	the	pre-existing	code	has	been	removed.	This
is	due	to	it	not	being	required	at	the	moment;	it	will	be	different	for	each	project
and	was	used	as	a	placeholder.

Whenever	I	refer	to	code	in	a	.php	file,	I	mean	the	code	between	the	require	lines,
also	known	as	the	non-PHP	code.	So,	if	I	were	to	tell	you	to	put	the	following

code	at	the	end	of	the	index.php	file	code:	

I	don't	mean	add	the	code	like	this:	

Instead,	what	I	mean	is	this:	

If	I	ever	intend	for	you	to	modify	or	factor	in	the	PHP	code,	which	will	only	be
the	require	lines	in	this	book,	then	I	will	explicitly	state	it.	Now	that's	out	of	the
way,	let's	continue.	The	jumbotron	code	will	produce	the	following	result:	

We	now	have	a	jumbotron;	try	resizing	it	and	seeing	how	it	reacts.	Let's	go
through	the	code	line	by	line:

Line	3	creates	a	div	set	up	to	be	a	jumbotron.	The	jumbotron-fluid	class	isn't
required,	but	it	forces	the	width	of	the	jumbotron	to	match	its	parent	width,
which	happens	to	be	the	body.	Removing	this	class	won't	have	any	effect	on
our	current	website,	but	if	you	were	to	add	a	max-width	on	the	body	using
CSS,	then	you	would	see	the	difference;	as	an	extra	task,	I	would
recommend	doing	this.
Line	4	creates	the	container	we	know	and	love.
Line	5	creates	a	header	using	a	Bootstrap-styled	class.
Line	6	creates	a	paragraph	using	a	Bootstrap-styled	class.
Lines	7	and	8	close	the	jumbotron	and	container	elements	respectively.

You	can	pretty	much	include	anything	inside	the	jumbotron,	such	as
rows	and	images.

We	have	a	working	jumbotron,	but	it	is	a	far	cry	from	what	we	have	seen	on
other	single-page	websites.	This	can	be	solved	using	images,	CSS,	and	other
elements.	Let's	do	some	of	this	now.

Adding	an	image	to	the
jumbotron
We	can	add	a	simple	image	that	appears	with	the	rest	of	the	content;	we	will	add
a	background	image	as	this	is	a	very	common	standard.	However,	we	will	first
cover	changing	the	color	of	the	background;	let's	change	it	to	red.	Add	the

following	ID	to	the	jumbotron:	

Now,	add	the	following	CSS	to	the	index.css	file:	

I	chose	to	change	the	text	color	to	white	as	it	is	more	visually	striking	on	the	red
background.	I	have	also	chosen	a	different	shade	of	red	that	conforms	to	modern
flat	design	standards.	Here's	the	result	of	our	code:	

As	you	can	see,	even	something	as	simple	as	changing	the	color	can	have	a
profound	effect	on	how	the	content	looks.

Let's	add	a	background	image;	any	image	will	suffice.	Replace	the	container
element	in	the	index.php	file	with	an	image	element	that	has	an	ID	of	JumbotronImage,

as	can	be	seen	here:	

The	preceding	code	produces	the	following	result:	

As	you	can	see,	this	is	less	than	ideal	for	the	following	reasons:

The	image	doesn't	occupy	the	width	of	the	browser
The	image	isn't	responsive	when	the	browser	is	resized
There	is	padding	in	the	jumbotron,	which	is	visible	as	red	empty	space

First,	let's	fix	the	issue	of	the	image	not	occupying	the	full	width	of	the	browser
and	not	being	responsive.	This	can	be	achieved	by	adding	some	simple	CSS	to
constrain	the	image's	width,	as	demonstrated:	

This	produces	the	following	result:	

We	are	almost	there;	now	we	have	to	remove	the	red	empty	space.	Removing	the
styling	code	from	the	jumbotron	will	not	fix	this,	as	it	will	just	show	the	default
grey	color	instead.	We	need	to	remove	the	padding,	which	can	be	done	in	CSS,

as	follows:	

The	preceding	code	produces	the	following	result:	

We	now	have	a	fully	responsive	image	with	no	padding,	which	looks	awesome.
Many	websites	put	text	onto	the	image	as	well,	not	embedded	in	the	image,	but
as	a	HTML	element	over	the	top.	We	will	cover	implementing	this	in	the	next
section.

Combining	text	and	images	in	a
jumbotron
To	add	some	text,	we	will	use	the	same	header	tag	and	class	we	used	before;	it
will	be	placed	above	the	image,	as	follows:	

The	preceding	code	produces	the	following	result:	

Though	the	heading	has	appeared,	it	is	above	the	image,	which	is	not	what	we
wanted	at	all.	We	can	ignore	the	background	color	behind	the	heading,	as	it	can

be	anything,	because	it	won't	be	shown	once	the	text	is	on	top	of	the	image.

We	need	to	change	the	positioning	method	used	for	the	heading	to	absolute,
which	won't	be	positioned	relatively	to	other	objects.	First,	add	a	class	of
jumbotronTextOnImages	to	the	heading,	as	shown:	

Add	the	following	CSS	code	to	the	index.css	file:	

This	will	produce	the	following	result:	

We	are	now	getting	somewhere.	This	still	isn't	very	appealing;	it	will	help	if	we
center	the	text	horizontally.	This	can	be	achieved	by	adding	a	built-in	Bootstrap
class	called	text-center	to	the	heading,	as	illustrated:	

This	has	no	visual	effect	at	the	moment,	because	our	heading	has	a	position	of

absolute,	which	can	mess	with	certain	items.	However,	overcoming	this	issue	is
simple,	simply	add	a	width	of	100%	to	the	jumbotronTextOnImages	class:	

This	will	produce	the	following	result:	

Many	times,	text	isn't	completely	centered	vertically,	and	is	usually	slightly	off-
center	or	a	quarter	of	the	way	along,	for	example.	We	will	do	something	similar
with	our	heading;	we	will	post	it	a	little	above	the	center.	First,	add	an	ID	of

JumbotronHeading	to	the	heading:	

Add	the	following	code	to	the	index.css	file	for	moving	the	text	down:	

This	will	now	produce	the	following	result:	

Fantastic,	but	you	may	be	wondering	why	we	used	an	ID	instead	of	adding	the
style	code	to	move	the	heading	down	to	the	jumbotronTextOnImages	class.	The	class
is	designed	to	be	reusable	with	other	elements	that	your	site	may	have,	but	the
positioning	is	more	specific	to	this	heading,	hence	the	use	of	an	ID	over	the	pre-
existing	class.

You	may	think	that	the	text	will	be	better	in	a	different	color,	and	I	would	totally
agree	with	you.	As	an	extra	task,	change	the	color	to	something	more	suitable	in
relation	to	the	background	image,	and	also	experiment	with	the	positioning.

Anchoring	a	section	to	the
navigation	bar
If	we	go	back	to	one	of	our	single-page	examples	from	earlier	in	this	chapter	(or
any	single-page	website),	you	will	notice	that	the	navigation	bar	provides	a
means	of	actually	navigating	the	website.	Even	though	there	is	only	a	single
page,	there	is	often	a	tendency	for	the	page	to	get	pretty	long.	This	isn't	a
problem,	but	one	of	the	many	great	features	of	single-page	websites;	it	still
requires	navigation	using	the	conventional	means	of	buttons.	Let's	go	back	to	the
Richman	website	and	take	a	look.	If	we	click	on	the	ABOUT	button,	for
example,	it	scrolls	us	down	to	the	about	section,	as	follows:	

Let's	implement	this	for	our	website.	Update	the	href	attribute	of	the	Home	button
in	the	HEADER.php	file	to	have	the	ID	of	HomeSection,	as	shown:	

If	you	try	clicking,	nothing	will	happen	at	the	moment	because	it	hasn't	been
linked	to	the	first	section.	Implementing	the	linkage	is	extremely	simple,	just	add

an	ID	of	HomeSection	to	the	jumbotron	div,	as	demonstrated:	

Before	we	even	run	our	website,	you	may	be	scratching	your	head	and	thinking
that	there	was	an	ID	already	assigned	to	the	jumbotron	div.	You	would	be	right;	I
have	renamed	it	from	JumbotronID	to	HomeSection	as	it	accurately	represents	what	the
section	is;	there	can	be	multiple	jumbotrons.	When	you	run	the	website,	certain
aspects	such	as	styling	will	not	be	applied	correctly;	you	need	to	go	to	the
index.css	file	and	update	all	instances	of	HomeSection	and	anywhere	else	you	may	be
referring	to	it.	At	the	moment,	there	is	only	one	instance,	which	is	in	the	index.css
file.

You	might	be	wondering	why	I	didn't	name	it	like	that	from	the	beginning.	The
main	reason	is,	while	programming	anything	you	will	have	to	go	back	and
change	things,	especially	the	naming	of	objects	and	variables.	Each	change	will
come	with	its	own	bugs	that	need	to	be	addressed,	so	getting	into	the	swing	of
things	now	will	help	you	better	understand	how	to	overcome	those	bugs.

If	you	run	the	website	now,	it	will	appear	to	do	nothing	when	the	Home	button	is
clicked.	However,	if	you	look	at	the	URL,	there	will	be	an	anchored	URL	that
will	look	similar	to	the	following	image	with	some	slight	variation	depending	on

your	website/server	location:	

It	is	clearly	anchoring	the	home	section;	it	is	actually	working,	there	just	isn't
enough	content	for	it	to	actually	move.	You	can	confirm	this	by	either	resizing
the	browser's	height	to	something	very	small	or	adding	random	content	before
the	jumbotron	div,	and	the	anchoring	will	work.

We	can	leave	the	scrolling	as	is	so	that	it	works	just	fine.	However,	it	doesn't
actually	scroll,	but	it	snaps	to	the	home	section;	it	isn't	a	nice	smooth	scroll.	The
next	section	will	cover	animation	for	our	scroll,	or	lack	of	scroll.

Animating	our	navigation	bar
anchor
Now	it's	time	to	implement	some	JavaScript.	First,	let's	create	a	folder	called	JS

at	the	root	of	our	project	directory,	as	follows:	

Now,	create	a	JavaScript	file	called	index.js	inside	the	JS	folder.	After	creation,
the	structure	of	your	project	will	look	like	the	following	image:	

Now,	let's	include	the	index.js	file	into	our	FOOTER.php	file	using	the	following	line:	

The	file	is	included	after	the	other	scripts	because	it	will	use	code
from	jQuery,	and	as	your	project	expands	it	will	most	likely	use
features	from	the	other	files	as	well.	You	can	also	include
JavaScript	files	in	the	header,	but	this	means	the	website	takes
longer	to	load	before	anything	is	displayed.	Users	most	likely	wait

for	the	website	to	load	or	for	the	majority	of	it	to	load	before
interacting	with	it,	so	having	it	visually	appear	as	fast	as	possible
is	very	important	for	all	websites.

As	you	may	expect,	this	produces	nothing	visually;	we	need	to	add	the	animation
code	inside	the	index.js	file.	However,	before	we	do	that,	let's	add	an	ID	to	the
NavBarHomeButton	button,	which	will	allow	us	to	easily	detect	the	button	in
JavaScript.	The	HEADER.php	file	will	feature	the	following	change:	

Now,	add	the	following	code	to	the	index.js	file	to	smoothly	scroll	to	the
anchored	section	instead	of	snapping	to	its	location:	

Let's	go	through	each	line	of	code	and	its	purpose:

Line	1	ensures	that	the	JavaScript	code	is	only	triggered	once	the	page	has
fully	loaded,	ensuring	that	the	element	is	set	up	correctly	before	using	it.
Line	3	checks	whether	the	Home	button	in	the	navigation	bar	has	been
pressed	by	using	a	jQuery	listener	to	detect	clicks.
Line	5	is	used	to	scroll	within	the	website.
Line	7	sets	which	element	to	scroll	to	by	getting	its	position	from	the	top.
The	scrollTop	functionality	essentially	scrolls	to	a	particular	point,	hence	the
need	for	the	top	of	the	element's	position.
Line	8	is	used	to	specify	the	animation	duration	in	milliseconds,	which	is
set	to	2000,	that	is,	two	seconds.

Line	11	prevents	the	default	functionality	of	the	click,	which	would	have
been	the	previous	non-animated	scroll.

If	you	go	to	the	website	and	click	on	the	Home	button,	it	will	not	work.	There
will	be	an	error	in	your	browser's	console	related	to	the	JavaScript	code,	which
will	look	something	like	this:	

The	exact	error	may	vary	depending	on	the	browser	you	are	testing
the	website	with,	but	it	will	be	something	similar.	The	following
website	shows	how	to	open	the	console	on	all	browsers:	https://www.
wickedlysmart.com/hfjsconsole/

The	reason	for	this	error	occurring	is	due	to	the	jQuery	version	used	with	the
Bootstrap	template.	It	is	the	slim	version	that	removes	a	lot	of	extra	jQuery
functionalities,	including	animation.	To	access	animation,	we	need	the	full
version;	replace	the	jQuery	include	line	in	the	footer	with	the	following	link:	https
://code.jquery.com/jquery-3.2.1.min.js

The	FOOTER.php	file	will	now	look	like	this:	

If	you	run	the	code,	the	website	will	now	scroll	to	the	Home	section	smoothly
instead	of	snapping	to	it,	assuming	that	you	have	content	before	that	section,	as

https://www.wickedlysmart.com/hfjsconsole/
https://code.jquery.com/jquery-3.2.1.min.js

mentioned	earlier.	Great!	We	have	a	scrolling	single-page	website,	but	we	will
have	to	duplicate	the	JavaScript	code	for	every	navigation	button.	This	will	lead
to	immense	redundancy,	which	is	what	we	are	trying	to	avoid	with	the	reusable
project	template.	Instead,	we	will	dynamically	select	the	section	from	the	button
clicked	on	to	navigate	to.	First,	remove	the	ID	on	the	Home	button	in	the
navigation	bar	and	add	a	class	called	navButton;	the	navigation	bar	will	now	look

like	this:	

Now	update	the	index.js	file	to	look	like	the	following	code:	

The	following	lines	have	been	changed:

Line	3	checks	whether	a	button	with	the	class	of	navButton	has	been	clicked.
Line	7	gets	the	href	of	the	element	the	user	has	clicked	on.	This	means	that
even	if	we	decide	to	change	the	element	to	which	a	navigation	button
points,	the	JavaScript	code	will	automatically	have	access	to	the	new
location,	thus	reducing	redundancy.

The	next	section	will	cover	fixing	a	problem	you	may	have	noticed	with	the
footer.

Fixing	footer	visibility	and	the
location	problem
Our	footer	has	a	problem	in	that,	when	we	scroll	on	small	screens,	the	footer
stays	where	it	is,	it	doesn't	remain	at	the	bottom,	as	shown:	

I	have	made	the	footer	text	color	red	to	illustrate	the	problem	more
clearly.

Fixing	this	is	extremely	simple;	it	actually	requires	us	to	remove	code	instead	of
adding	any.	Then,	you	may	be	wondering	why	I	put	the	code	in;	this	was
intended	to	showcase	some	of	the	problems	you	may	face.	Just	remove	all	style

code	related	to	the	footer,	which	should	be	as	follows:	

The	website	footer	now	will	react	like	this:

Placing	the	header	on	top
Most	single-page	websites	always	place	their	headers	(navigation	bar)	on	top.
This	allows	easy	access	to	navigation	even	on	long	pages,	leading	to	a	more
seamless	experience.	The	Richman	website	example	does	this;	I	would
recommend	taking	a	look	and	seeing	how	it	feels	as	a	user.	Just	a	quick
reminder;	here's	a	screenshot	of	the	problem	on	our	website	that	we	are	trying	to
fix:	

We	want	the	content	of	the	website	to	scroll	underneath	the	navigation	bar,	and
not	take	it	with	itself	while	scrolling.	Fortunately	for	us,	implementing	this	is
extremely	simple,	just	add	a	fixed-top	class	to	the	navbar	element,	as	shown:	

You	may	notice	that	the	content	of	your	website	moves	up	slightly	even	when
you	are	at	the	top	of	your	website.	Some	of	the	content	is	behind	the	navigation
bar;	this	is	due	to	the	fixed-top	class	making	the	navigation	bar	fixed,	which
means	all	other	content	will	not	flow	relatively	to	the	navigation	bar.	This	can
easily	be	fixed	by	inserting	padding	at	the	top	of	the	content	to	push	it	all	down.
The	amount	of	padding	will	vary	depending	on	your	navigation	bar's	height;	for
me,	it's	56px,	and	is	most	likely	the	same	for	you.	This	padding	will	be	applied	to
the	body	using	padding-top,	as	we	want	to	push	content	from	the	top	down.	Add

the	following	code	to	the	index.css	file:	

Now	when	we	run	our	website,	the	navigation	bar	will	be	fixed	to	the	top	while
not	hiding	any	content	unless	we	scroll.

Changing	the	current	button
selected
In	the	navigation	bar,	we	have	two	buttons.	The	Home	button	is	always
active/selected	regardless	of	which	of	the	buttons	are	pressed,	this	problem	will
also	occur	with	more	than	two	buttons.	Let's	implement	some	JavaScript	to
change	the	active	status	of	the	buttons	when	a	button	is	actually	pressed.	By
default,	we	will	leave	the	Home	button	active	on	website	launch.

If	you	go	to	the	HEADER.php	file,	you	will	notice	a	class	of	active	applied	to	the	Home

list	item:	

Add	a	class	of	navLi	to	all	list	items	in	the	navigation	bar,	as	follows:	

The	reason	for	us	adding	a	new	class	instead	of	using	the	existing	nav-item	class	is
because	your	website	may	need	nav-item	elsewhere	as	it	grows,	which	will	cause
conflicts.

Add	the	following	code	to	the	index.js	file:	

Let's	run	through	each	new	line	of	code:

Line	1	removes	the	active	class	from	all	list	items	in	the	navigation	bar
Line	2	adds	the	active	class	to	the	list	item	that	was	pressed	by	using	the	this
keyword,	which	allows	us	to	get	the	specific	nav	list	item	that	was	clicked

When	clicking	on	another	button	in	the	navigation	bar,	it	will	highlight,	as

illustrated:	

Common	pitfalls
We	have	covered	a	lot	in	this	chapter.	Many	of	these	things	will	serve	as	a	basis
for	future	projects	within	this	book	and	beyond.	Now	we	will	look	at	some	of	the
common	problems	you	may	face.

	

Navigation	bar	height	variance	on
mobile	devices
We	implemented	padding	in	our	body	to	overcome	the	fact	that	the	navigation
bar,	when	fixed,	was	covering	some	of	the	content.	Our	current	project	works	the
same	in	this	regard	on	all	devices,	but	it	is	common	for	navigation	bars	to	change
size	depending	on	the	device/browser	size.	This	can	lead	to	the	same	problem;
solving	this	can	be	done	using	media	queries	to	check	which	device	the	website
is	running	on.

Also,	some	websites	may	even	change	the	size	of	the	navigation	bar	on	the	same
device/browser	size.	This	can	be	due	to	the	user	scrolling	and	the	navigation	bar
becoming	smaller	as	a	result.	This	can	be	very	appealing	visually,	but	media
queries	will	be	necessary	to	accommodate	for	this	change.

	

	

	

Navigation	bar	button	anchoring
You	may	have	noticed,	when	clicking	on	the	navigation	buttons,	that	it	doesn't
work	and	provides	an	error	similar	to	this:	

This	is	due	to	the	fact	that	the	button	is	pointing	to	an	element	that	doesn't	exist.
Any	problems	like	this	will	be	resolved	as	we/you	naturally	add	the	remaining
sections	to	the	website.

This	isn't	an	exhaustive	list	of	problems,	so	if	you	face	any,	feel	free	to	reach	out
via	my	free	education	platform,	at	http://www.sonarlearning.co.uk

http://www.sonarlearning.co.uk

Summary
In	this	chapter,	we	covered	creating	our	website's	first	section,	linking	it	with	our
navigation	bar,	and	modifying	the	website	to	accommodate	this	section.	The	next
chapter	will	cover	creating	another	section	that	can	be	reused	over	and	over
again.

	

Creating	a	Generic	Reusable
Single	Page	Section
This	chapter	will	cover	creating	a	generic	section	that	can	be	extended	to
multiple	sections.	This	section	provides	the	ability	to	display	any	information
your	website	needs.	The	importance	of	this	chapter	cannot	be	overstated:	the
majority	of	the	sections	in	your	single	page	website	will	be	influenced	by	the
skills	learned	in	this	chapter.	They	will	allow	you	to	create	anything	from	a
contact	form	to	a	pricing	model.

The	topics	covered	in	this	chapter	are	as	follows:

Generic	single	page	section	creation
Anchoring	this	section	to	the	overall	single	page	website	design	flow
Bootstrap	images
Bootstrap	image	grid	layout
Debugging	and	testing	responsive	design

	

	

	

Different	sections	in	single	page
websites
There	are	countless	variations	when	it	comes	to	different	sections	that	can	be
incorporated	into	the	design	of	a	single	page	website.	In	the	previous	chapter,	we
implemented	an	introduction	section	that	contained	a	full	width	image	and
overlaying	text.	It	is	more	than	appropriate	to	have	similar	layouts	for	other
sections,	but	let's	look	at	some	of	the	other	commonly	used	layouts.

Single	page	sections	are	commonly	used	to	display	the	following	data	to	the
user:

Contact	form	(will	be	implemented	in	the	next	chapter).
About	us:	This	can	be	as	simple	as	a	couple	of	paragraphs	talking	about	the
company/individual	or	more	complex	with	images,	even	showing	the	team
and	their	roles.
Projects/work:	Any	work	you	or	the	company	has	done	and	would	like	to
showcase.	They	are	usually	linked	to	external	pages	or	pop	up	boxes
containing	more	information	about	the	project.
Useful	company	info	such	as	opening	times.

These	are	just	some	of	the	many	uses	for	sections	in	a	single	page	website.	A
good	rule	of	thumb	is	that	if	it	can	be	a	page	on	another	website	it	can	most
likely	be	adapted	into	sections	on	a	single	page	website.	Also,	depending	on	the
amount	of	information	a	single	section	has,	it	could	potentially	be	split	into
multiple	sections.

	

	

	

Single	page	section	examples
Let's	go	through	some	examples	of	the	sections	mentioned.

Contact	form
As	can	be	seen	by	the	contact	form	from	Richman,	the	elements	used	are	very
similar	to	that	of	a	contact	page.	A	form	is	used	with	inputs	for	the	various
pieces	of	information	required	from	the	user	along	with	a	button	for	submission:	

Not	all	contact	forms	will	have	the	same	fields.	Put	what	you	need,	it	may	be
more	or	less,	there	is	no	right	or	wrong	answer.	Also	at	the	bottom	of	the	section
is	the	company's	logo	along	with	some	written	contact	information,	which	is	also
very	common.	Some	websites	also	display	a	map	usually	using	the	Google	Maps
API;	these	mainly	have	a	physical	presence	such	as	a	store.

Website	link—http://richman-kcm.com/

http://richman-kcm.com/

	

About	us
This	is	an	excellent	example	of	an	about	us	page	that	uses	the	following
elements	to	convey	the	information:

Images:	Display	the	individual's	face.	Creates	a	very	personal	touch	to	the
otherwise	digital	website.
Title:	Used	to	display	the	individual's	name.	This	can	also	be	an	image	if
you	want	a	fancier	title.
Simple	text:	Talks	about	who	the	person	is	and	what	they	do.
Icons:	Linking	to	the	individual's	social	media	accounts.

Website	link—http://designedbyfew.com/

	

http://designedbyfew.com/

	

	

Projects/work
This	website	shows	its	work	off	very	elegantly	and	cleanly	using	images	and

little	text:	

It	also	provides	a	carousel-like	slider	to	display	the	work,	which	is	extremely
useful	for	displaying	the	content	bigger	without	displaying	all	of	it	at	once	and	it
allows	a	lot	of	content	for	a	small	section	to	be	used.

Website	link:	http://peeltheorange.com/#recent-work

http://peeltheorange.com/#recent-work

Opening	times
This	website	uses	a	background	image	similar	to	the	introduction	section	created
in	the	previous	chapter	and	an	additional	image	on	top	to	display	the	opening
times.

This	can	also	be	achieved	using	a	mixture	of	text	and	CSS	styling	for	various
facets	such	as	the	border.

Website	link—http://www.mumbaigate.co.uk/

http://www.mumbaigate.co.uk/

	

Implementing	our	generic
reusable	single	page	section
We	will	now	create	a	generic	section	that	can	easily	be	modified	and	reused	to
our	single	page	portfolio	website.	But	we	still	need	some	sort	of	layout/design	in
mind	before	we	implement	the	section,	let's	go	with	an	Our	Team	style	section.

	

	

	

What	will	the	Our	Team	section
contain?
The	Our	Team	section	will	be	a	bit	simpler	than	the	examples	shown	earlier	in
this	chapter,	but	it	can	easily	be	modified	to	accommodate	the	animations	and
styles	displayed	on	the	previously	mentioned	websites.	It	will	be	similar	to	the
following	example:	

Website	link—http://demo.themeum.com/html/oxygen/

The	preceding	example	consists	of	the	following	elements:

Heading
Intro	text	(Lorem	Ipsum	in	this	case)
Images	displaying	each	member	of	the	team
Team	member's	name
Their	role
Text	informing	the	viewer	a	little	bit	about	them
Social	links

http://demo.themeum.com/html/oxygen/

We	will	also	create	our	section	using	a	similar	layout.	We	are	now	finally	going
to	use	the	column	system	to	its	full	potential	to	provide	a	responsive	experience
using	breakpoints.	I	would	recommend	going	to	the	previous	example	and
resizing	your	browser	to	see	how	the	section	reacts.	I	would	recommend	doing
this	on	all	the	examples	from	this	book	as	it	will	help	you	understand	the
common	design	decisions	that	most	websites	adhere	to.

Creating	the	Our	Team	section
container
First	let's	implement	a	simple	container,	with	the	title	and	section	introduction
text,	without	any	extra	elements	such	as	an	image.	We	will	then	use	this	to	link
to	our	navigation	bar.	Add	the	following	code	to	the	jumbotron	div:	

Let's	go	over	what	the	preceding	code	is	doing:

Line	9	creates	a	container	that	is	fluid,	allowing	it	to	span	the	browser's
width	fully.	This	can	be	changed	to	a	regular	container	if	you	like.	The	id
will	be	used	very	soon	to	link	to	the	navigation	bar.
Line	10	creates	a	row	in	which	our	text	elements	will	be	stored.
Line	11	creates	a	div	that	spans	all	the	12	columns	on	all	screen	sizes	and
centers	the	text	inside	of	it.
Line	12	creates	a	simple	header	for	the	Team	section.
Line	14	to	Line	16	adds	introduction	text.	I	have	put	the	first	two	sentences
of	"Lorem	Ipsum..."	inside	of	it,	but	you	can	put	anything	you	like.

All	of	this	produces	the	following	result:

Anchoring	the	Team	section	to
the	navigation	bar
As	we	did	in	the	previous	chapter,	we	will	now	link	the	navigation	bar	to	the
Team	section.	This	will	allow	the	user	to	navigate	to	the	Team	section	without
having	to	scroll	up	or	down.	At	the	moment,	there	is	no	need	to	scroll	up,	but
when	more	content	is	added	this	can	become	a	problem	as	a	single	page	website
can	become	quite	long.	Fortunately,	we	have	already	done	the	heavy	lifting	with
the	navigation	bar	through	HTML	and	JavaScript,	phew!

First,	let's	change	the	name	of	the	second	button	in	the	navigation	bar	to	Team.

Update	the	navigation	bar	like	so:	

The	navigation	bar	will	now	look	as	follows:	

Fantastic,	our	navigation	bar	is	looking	more	like	what	you	would	see	on	a	real
website.	Now	let's	change	href	to	the	same	ID	as	the	Team	section,	which	was

#TeamSection	like	so:	

Now	when	we	click	on	any	of	the	navigation	buttons	we	get	no	JavaScript	errors
like	we	would	have	in	the	previous	chapter.	Also,	it	automatically	scrolls	to	each
section	without	any	extra	JavaScript	code.

Adding	the	team's	pictures
Now	let's	use	images	to	showcase	the	team	members.	I	will	use	the	image	from
the	following	link	for	our	employees,	but	in	a	real	website	you	would	obviously
use	different	images:	http://res.cloudinary.com/dmliyxggm/image/upload/v1511699813/John_
vepwoz.png

I	have	modified	the	image	so	all	the	background	is	removed	and	the	image	is

trimmed,	so	it	looks	as	follows:	

Up	until	now,	all	images	that	we	have	used	have	been	stored	on	other	websites
such	as	CDN's,	this	is	great,	but	the	need	may	arise	when	the	use	of	a	custom
image	like	the	previous	one	is	needed.	We	can	either	store	it	on	a	CDN,	which	is
a	very	good	approach,	and	I	would	recommend	Cloudinary
(http://cloudinary.com/),	or	we	can	store	it	locally,	which	we	will	do	now.

A	CDN	is	a	Content	Delivery	Network	that	has	a	sole	purpose	of
delivering	content	such	as	images	to	other	websites	using	the	best
and	fastest	servers	available	to	a	specific	user.	I	would	definitely
recommend	using	one.

http://res.cloudinary.com/dmliyxggm/image/upload/v1511699813/John_vepwoz.png
http://cloudinary.com/

Create	a	folder	called	Images	and	place	the	image	using	the	following	folder
structure:

Root
CSS
Images

Team
Thumbnails

Thumbnails.png
Index.php
JS
SNIPPETS

This	may	seem	like	overkill,	considering	we	only	have	one	image,	but	as	your
website	gets	more	complex	you	will	store	more	images	and	having	an	intelligent
folder	structure/hierarchy	will	save	an	immense	amount	of	time.

Add	the	following	code	to	the	first	row	like	so:	

The	code	we	have	added	doesn't	actually	provide	any	visual	changes	as	it	is
nothing	but	empty	div	classes.	But	these	div	classes	will	serve	as	structures	for
each	team	member	and	their	respective	content	such	as	name	and	social	links.

We	created	a	new	row	to	group	our	new	div	classes.	Inside	each	div	we	will
represent	each	team	member.	The	classes	have	been	set	up	to	be	displayed	like
so:

Extra	small	screens	will	only	show	a	single	team	member	on	a	single	row
Small	and	medium	screens	will	show	two	team	members	on	a	single	row
Large	and	extra	large	screens	will	show	four	team	members	on	a	single	row

The	rows	are	rows	in	their	literal	sense	and	not	the	class	row.
Another	way	to	look	at	them	is	as	lines.

The	sizes/breakpoints	can	easily	be	changed	using	the	information	regarding	the
grid	from	Chapter	2,	What	Is	Bootstrap,	Why	Do	We	Use	It?

Now	let's	add	the	team's	images,	update	the	previous	code	like	so:	

The	preceding	code	produces	the	following	result:	

As	you	can	see,	this	is	not	the	desired	effect	we	were	looking	for.	As	there	are	no
size	restrictions	on	the	image,	it	is	displayed	at	its	original	size.	Which,	on	some
screens,	will	produce	a	result	similar	to	the	monstrosity	you	see	before	you;
worry	not,	this	can	easily	be	fixed.

Add	the	classes	img-fluid	and	img-thumbnail	to	each	one	of	the	images	like	so:	

The	classes	we	added	are	designed	to	provide	the	following	styling:

img-fluid:	Provides	a	responsive	image	that	is	automatically	restricted	based
on	the	number	of	columns	and	browser	size.
img-thumbnail:	Is	more	of	an	optional	class,	but	it	is	still	very	useful.	It
provides	a	light	border	around	the	images	to	make	them	pop.

This	produces	the	following	result:	

As	can	be	seen,	this	is	significantly	better	than	our	previous	result.	Depending	on
the	browser/screen	size,	the	positioning	will	slightly	change	based	on	the	column
breakpoints	we	specified.	As	usual,	I	recommend	that	you	resize	the	browser	to
see	the	different	layouts.

These	images	are	almost	complete;	they	look	fine	on	most	screen	sizes,	but	they
aren't	actually	centered	within	their	respective	div.	This	is	evident	on	larger
screen	sizes,	as	can	be	seen	here:	

It	isn't	very	noticeable,	but	the	problem	is	there,	it	can	be	seen	to	the	right	of	the
last	image.	You	probably	could	get	away	without	fixing	this,	but	when	creating
anything,	from	a	website	to	a	game,	or	even	a	table,	the	smallest	details	are	what
separate	the	good	websites	from	the	amazing	websites.	This	is	a	simple	idea
called	the	aggregation	of	marginal	gains.	Fortunately	for	us,	like	many	times

before,	Bootstrap	offers	functionality	to	resolve	our	little	problem.	Simply	add
the	text-center	class,	to	the	row	within	the	div	of	the	images	like	so:	

This	now	produces	the	following	result:	

There	is	one	more	slight	problem	that	is	only	noticeable	on	smaller	screens	when
the	images/member	containers	are	stacked	on	top	of	each	other.	The	following

result	is	produced:	

The	problem	might	not	jump	out	at	first	glance,	but	look	closely	to	the	gaps
between	the	images	that	are	stacked,	or	I	should	say,	to	the	lack	of	a	gap.	This
isn't	the	end	of	the	world,	but	again	the	small	details	make	an	immense
difference	to	the	look	of	a	website.	This	can	be	easily	fixed	by	adding	padding	to
each	team	member	div.	First	add	a	class	of	teamMemberContainer	to	each	team

member	div	like	so:	

Add	the	following	CSS	code	to	the	index.css	file	to	provide	a	more	visible	gap

through	the	use	of	padding:	

This	simple	solution	now	produces	the	following	result:	

If	you	want	the	gap	to	be	bigger,	simply	increase	the	value	and	lower	it	to	reduce
the	gap.

Team	member	info	text
The	previous	section	covered	quite	a	lot,	if	you're	not	100%	on	what	we	did	just
go	back	and	take	a	second	look.	This	section	will	thankfully	be	very	simple	as	it
will	incorporate	techniques	and	features	we	have	already	covered,	to	add	the
following	information	to	each	team	member:

Name
Job	title
Member	info	text
Plus	anything	else	you	need

Update	each	team	member	container	with	the	following	code:	

Let's	go	over	the	new	code	line	by	line:

Line	24	adds	a	simple	header	that	is	intended	to	display	the	team	member's
name.	I	have	chosen	an	h4	tag,	but	you	can	use	something	bigger	or	smaller
if	you	like.
Line	26	adds	the	team	member's	job	title,	I	have	used	a	paragraph	element
with	the	Bootstrap	class	text-muted,	which	lightens	the	text	color.	If	you
would	like	more	information	regarding	text	styling	within	Bootstrap,	feel
free	to	check	out	the	following	link.
Line	28	adds	a	simple	paragraph	with	no	extra	styling	to	display	some
information	about	the	team	member.

Bootstrap	text	styling	link—https://v4-alpha.getbootstrap.com/utilities/

colors/

https://v4-alpha.getbootstrap.com/utilities/colors/

The	code	that	we	just	added	will	produce	the	following	result:	

As	usual,	resize	your	browser	to	simulate	different	screen	sizes.	I	use	Chrome	as
my	main	browser,	but	Safari	has	an	awesome	feature	baked	right	in	that	allows
you	to	see	how	your	website	will	run	on	different	browsers/devices,	this	link	will
help	you	use	this	feature—https://www.tekrevue.com/tip/safari-responsive-design-mode/

Most	browsers	have	a	plethora	of	plugins	to	aid	in	this	process,	but	not	only	does
Safari	have	it	built	in,	it	works	really	well.

It	all	looks	fantastic,	but	again	I	will	nitpick	at	the	gaps.	The	image	is	right	on
top	of	the	team	member	name	text;	a	small	gap	would	really	help	improve	the
visual	fidelity.	Add	a	class	of	teamMemberImage	to	each	image	tag	as	it	is

demonstrated	here:	

Now	add	the	following	code	to	the	index.css	file,	which	will	apply	a	margin	of
10px	below	the	image,	hence	moving	all	the	content	down:	

https://www.tekrevue.com/tip/safari-responsive-design-mode/

Change	the	margin	to	suit	your	needs.

This	very	simple	code	will	produce	the	following	similar	yet	subtly	different	and
more	visually	appealing	result:	

Team	member	social	links
We	have	almost	completed	the	Team	section,	only	the	social	links	remain	for
each	team	member.	I	will	be	using	simple	images	for	the	social	buttons	from	the
following	link:	https://simplesharebuttons.com/html-share-buttons/

I	will	also	only	be	adding	three	social	icons,	but	feel	free	to	add	as	many	or	as
few	as	you	need.	Add	the	following	code	to	the	button	of	each	team	member

container:	

Let's	go	over	each	new	line	of	code:

Line	30	creates	a	div	to	store	all	the	social	buttons	for	each	team	member
Line	31	creates	a	link	to	Facebook	(add	your	social	link	in	the	href)
Line	32	adds	an	image	to	show	the	Facebook	social	link
Line	35	creates	a	link	to	Google+	(add	your	social	link	in	the	href)
Line	36	adds	an	image	to	show	the	Google+	social	link
Line	39	creates	a	link	to	Twitter	(add	your	social	link	in	the	href)
Line	40	adds	an	image	to	show	the	Twitter	social	link

https://simplesharebuttons.com/html-share-buttons/

We	have	added	a	class	that	needs	to	be	implemented,	but	let's	first	run	our
website	to	see	the	result	without	any	styling:	

It	looks	OK,	but	the	social	icons	are	a	bit	big,	especially	if	we	were	to	have	more

icons.	Add	the	following	CSS	styling	to	the	index.css	file:	

This	piece	of	code	simply	restricts	the	social	icons	size	to	50px.	Only	setting	the
width	causes	the	height	to	be	automatically	calculated,	this	ensures	that	any
changes	to	the	image	that	involves	a	ratio	change	won't	mess	up	the	look	of	the
icons.	This	now	produces	the	following	result:	

Feel	free	to	change	width	to	suit	your	desires.	With	the	social	buttons
implemented	we	are	done.

	

Summary
In	this	chapter,	we	covered	implementing	another	section	to	our	single	page
website	to	showcase	team	members.	We	now	have	a	solid	base	for	more	sections
as	and	when	our	website	needs	them.	The	next	chapter	will	cover	adding	the
final	section	to	our	website,	providing	a	contact	form.

	

	

	

Creating	a	Contact	Us	Section
This	chapter	will	cover	adding	another	section	to	our	single	page	website	that
can	be	extended	to	multiple	sections.	This	section	will	display	a	contact	form,
but	it	can	easily	be	adapted	to	provide	information	to	the	user,	as	we	have
discussed	in	previous	chapters.

The	topics	covered	in	this	chapter	are	as	follows:

Anchoring	the	section	to	the	overall	single	page	website	design	flow
Bootstrap/HTML	forms
Bootstrap/HTML	single	line	text	input
Bootstrap/HTML	multiline	text	input
Bootstrap/HTML	button	input
Responsive	forms
Debugging	and	testing	responsive	design

	

	

Contact	Us	examples	for	single
page	websites
Though	contact	forms	come	in	a	variety	of	shapes	and	sizes,	the	majority	of
them	use	the	same	tried	and	tested	layout,	which	are	usually	of	the	following:

Name	input	field
Email	address	input	field
Message/description	multi	line	text	field
Send	button

Other	sections	can	be	added,	but	most	contact	forms	will	resemble	the	preceding
listed	components.

There	are	countless	variations	when	it	comes	to	different	sections	that	the	single
page	website	can	display.	In	Chapter	4,	Creating	the	Introduction	Section	we
implemented	an	introduction	section	that	contained	a	full	width	image	and
overlaying	text.	It	is	more	than	appropriate	to	have	similar	layouts	for	other
sections,	but	let's	look	at	some	of	the	other	commonly	used	layouts.

Let's	go	through	some	contact	form	examples.

Richman
This	example	is	the	same	one	we	looked	at	in	the	previous	section	and	it	is
simple	yet	very	effective	in	conveying	to	the	user	what	information	is	required
for	submitting	a	query.

Even	though	the	fields	are	slightly	different	to	the	ones	listed	in	the	previous
section,	they	essentially	require	the	same	information,	which	again	is:

Who	you	are
How	to	get	in	touch	with	you
Your	query

Website	link—http://richman-kcm.com/

http://richman-kcm.com/

Bueno
This	example	is	simpler	and	contains	the	exact	components	we	mentioned	earlier
in	this	chapter:

	There	is	also	an	image	to	complement	the	contact	form.

Website	link:	https://bueno.co/#contact

https://bueno.co/#contact

This	also
This	example	is	totally	different	in	that	it	has	no	contact	form,	but	it	provides
details	on	where	they	can	be	found	in	real	life	(IRL).

	It	also	provides	the	email	address	for	different	departments	along	with	a	map.

Website	link—http://thisalso.com/contact

http://thisalso.com/contact

Design	museum
This	is	another	example	with	no	contact	form,	just	simple	contact	details	along
with	a	map,	but	this	time	using	the	Google	Maps	API,	which	is	free,	extremely
powerful	and	familiar.

	If	you	scroll	down	there	are	more	departments	that	can	be	contacted.

Website	link—http://designmuseum.org/plan-your-visit/contact-information

http://designmuseum.org/plan-your-visit/contact-information

Choice	screening
Though	this	example	is	similar	to	the	first	two	in	that	there	is	a	contact	form	with
fields	to	fill	out,	there	is	a	lot	more	information	required	and	that	isn't	a	bad
thing.

Depending	on	the	nature	of	your	business,	your	contact	form	will	be	reflective	of
this.

Website	link—https://www.choicescreening.com/contact-choice-screening

https://www.choicescreening.com/contact-choice-screening

Implementing	the	Contact	Us
section
We	will	now	create	a	Contact	Us	section	that	can	easily	be	modified	and	reused
for	our	Single	Page	Portfolio	website.

	

What	will	the	Contact	Us	section
contain?
The	Contact	Us	section	will	be	very	similar	to	the	previous	Richman	and	Bueno
examples,	but	it	can	easily	be	adapted	to	the	other	website	styles.

The	Contact	Us	section	will	consist	of	the	following	elements:

Name	input	using	a	single	line	input	field
Email	address	input	using	a	single	line	input	field
Message/description	input	using	a	multiline	input	field

We	will	incorporate	many	of	the	techniques	covered	in	previous	chapters,
including	the	awesome	grid	system,	courtesy	of	Bootstrap.	Before	moving	on
with	this	chapter,	I	would	recommend	checking	out	all	the	examples	we
discussed	previously	and	resizing	the	web	browser	to	see	how	they	react	to
responsive	design.

	

	

	

Creating	the	Contact	Us	section
container
First	let's	implement	a	simple	container	that	will	hold	our	contact	form.	We	will
then	use	this	to	link	to	our	navigation	bar.	Add	the	following	code	below	the	our

Team	section:	

Let's	go	over	what	the	preceding	code	is	doing:

Line	119	creates	a	container	that	is	fluid,	allowing	it	to	span	the	browser's
width	fully.	This	can	be	changed	to	a	regular	container	if	you	like.	The	ID
will	be	used	very	soon	to	link	to	the	navigation	bar.
Line	120	creates	a	row	in	which	our	elements	will	be	stored.
Line	121	creates	a	div	that	spans	all	the	12	columns	on	all	screen	sizes	and
centers	the	text	inside	of	it.
Line	122	creates	a	simple	header	for	the	Contact	Us	section.

The	preceding	code	that	we	added	to	our	website	produces	the	following	result:	

The	Contact	Us	section	blends	in	with	the	team	section	as	they	have	the	same
background	color.	It	is	very	common	for	single	page	websites	to	have	different
background	colors/images	for	each	section.	One	very	popular	method	is	to
alternate	between	dark	and	light	backgrounds.	The	team	section	already	has	a
white	background,	let's	make	the	Contact	Us	section	black.

Add	the	following	styling	code	to	the	index.css	file:	

Let's	go	over	what	the	preceding	code	is	doing:

Line	45	sets	the	background	color	of	the	Contact	Us	section	to	black

Line	46	sets	the	text	color	of	the	content	inside	the	Contact	Us	section	to
white

This	will	invert	the	colors	as	shown	as	follows:	

You	may	notice	that	the	Contact	Us	header	has	less	space	at	the	top	compared	to
the	team	header.	This	is	due	to	the	fact	that	a	jumbotron	in	Bootstrap	has	a
margin	automatically	applied,	let's	apply	something	very	similar	to	all	the	other
sections.

Update	the	CSS	code	we	previously	added	to	include	a	margin	and	border	at	the

top	and	bottom	of	the	Contact	Us	section:	

I	have	chosen	2rem	as	that	is	what	the	jumbotron	applies,	but	you	can	modify	this
value	as	you	see	fit.	This	now	produces	the	following	result:	

Anchoring	the	Contact	Us	section
to	the	navigation	bar
Similar	to	the	previous	chapter,	we	will	link	the	navigation	bar	to	the	Contact	Us
section.	This	will	allow	the	user	to	navigate	to	the	Contact	Us	section	without
having	to	scroll	up	or	down.

There	are	only	two	items	in	the	navigation	bar,	which	have	already	been
assigned	to	the	introduction	and	team	section,	respectively.	We	will	need	to
create	a	whole	new	item	and	add	the	following	code	to	the	existing	navigation

bar	items:	

This	now	anchors	the	navigation	bar	to	our	Contact	Us	section	and	adds	a	new

menu	item	as	follows:	

It	automatically	scrolls	beautifully	to	the	Contact	Us	section	with	the	JavaScript
we	added	earlier	in	this	chapter.

Adding	the	contact	form
Now	let's	add	some	input	fields	for	the	contact	form,	we	will	start	off	with	the
following:

Email	address:	Single	line	input	field
Name:	Single	line	input	field

A	single	line	input	field	is	one	that	only	allows	a	single	line	of	text
as	the	name	suggests,	this	is	great	for	simple	data	such	as	the
previously	shown	data.

Add	the	following	code	to	the	header	row	that	we	implemented	in	the	previous

section:	

Let's	run	through	the	code	we	added	line	by	line:

Line	126	adds	a	form	that	will	contain	all	of	the	contact	form	elements.
This	can	easily	be	extended	with	a	form	action	to	create	a	fully	functioning
contact	form	with	the	aid	of	a	back-end	server	using	a	server	language	such
as	PHP.
Line	127	creates	a	row	for	all	of	our	contact	form	elements	to	reside	in.
Nothing	special	here,	we	have	done	this	a	million	and	one	times	already.
Line	128	creates	a	div	that	will	contain	all	the	email	address	elements.

Line	129	adds	a	label	to	inform	the	user	that	this	field	is	for	their	email
address.
Line	130	adds	an	email	input	field	with	email	validation.
Line	131	creates	some	small	text	to	reassure	the	user	that	their	email
address	will	be	kept	confidential.
Line	134	creates	a	div	that	will	contain	all	the	name	elements.
Line	135	adds	a	label	to	inform	the	user	that	this	field	is	for	their	name.
Line	136	adds	a	text	input	field	for	the	name.

All	of	this	produces	the	following	result:	

Before	we	add	the	rest	of	the	contact	form	elements,	you're	most	likely	thinking
to	yourself	that	this	does	not	look	like	the	examples	we	looked	at	earlier,	you're
absolutely	right.	It	doesn't	fully	make	use	of	the	space	available.	Lucky	for	us,
all	we	have	to	do	is	add	column	classes	to	each	div	containing	the	different

elements	like	so:	

This	forces	the	inputs	to	be	half	the	width	of	the	row	on	devices	that	are	medium
size	or	bigger	and	on	a	single	row	for	small	and	extra	small	sizes.

On	larger	devices	it	will	appear	like	this:	

On	smaller	devices	it	will	appear	like	this:	

Our	contact	form	is	coming	together	nicely,	add	the	following	code	to	implement

a	message	multiline	input	field:	

Producing	the	following:

The	last	element	to	add	is	the	send	button,	which	can	be	easily	added	using	the

following	code:	

Let's	go	over	the	button	code	line	by	line:

Line	144	simply	creates	a	div	to	contain	the	button
Line	145	creates	a	button	incorporating	built-in	Bootstrap	classes	for
styling	and	spans	12	columns	(full	width	of	the	parent	container)

More	information	about	buttons	and	styling	them	with	Bootstrap	is
situated	here	https://v4-alpha.getbootstrap.com/components/buttons/

This	will	produce	the	following	result:	

https://v4-alpha.getbootstrap.com/components/buttons/

It's	looking	good,	but	not	great,	adding	a	gap	between	the	message	text	area
element	and	the	send	button	will	help	improve	the	visual	fidelity	of	the	contact
form.	First	add	an	ID	of	ContactButtonContainer	to	the	button	parent	div	like	so:	

Visually,	the	website	will	remain	the	same	as	before	unless	we	add	some	styles
for	this	div.	This	can	be	achieved	by	adding	the	following	code	to	the	index.css

file:	

Which	in	turn	produces	this	awesome	result:	

We	are	now	done	with	the	contact	form	section	and	also	the	single	page	website.

Summary
In	this	chapter,	we	created	a	new	section	for	the	contact	form	and	added	it	to	our
single	page	website.	The	next	chapter	will	kick	start	our	next	project,	which	is	to
create	a	blog.

	

Creating	the	Blog	Posts	Home
Page
This	chapter	will	start	off	our	next	project,	which	will	be	a	blog.	This	time	round
our	website	will	consist	of	two	pages	instead	of	a	single	page.	In	this	chapter,	we
will	design	and	implement	the	home	page	of	the	blog,	which	will	display	all	the
blog	posts	to	the	user	in	a	simple	and	concise	format.

The	topics	covered	in	this	chapter	are	as	follows:

Bootstrap	cards
Bootstrap	sections
HTML	images
CSS	text	colors
CSS	fonts
HTML	page	anchor	tags
Debugging	and	testing	responsive	design

	

	

	

Blog	examples
As	always,	looking	at	other	people's	work	is	a	great	way	of	formulating	the
foundations	of	a	product,	be	it	a	website	or	a	chair.	We	aren't	going	to	look	at	any
chairs,	but	let's	take	a	look	at	some	blogs	(you	can	try	and	find	some	blogs	about
chairs)	and	see	their	design	decisions.

Let's	go	through	some	contact	form	examples.

	

	

	

TechCrunch
TechCrunch	is	a	fantastic	example	of	a	classic	tried	and	tested	tabloid	style
brought	to	the	modern	age.	There	are	various	elements	from	images,	to	videos	to
text,	and	much	much	more.

Website	link:	https://techcrunch.com/

https://techcrunch.com/

Gawker
Gawker	is	simpler,	but	it	provides	the	blog	posts	in	a	clean	linear	format	that	is
easily	accessible	on	all	devices.

Website	link:	http://gawker.com/

http://gawker.com/

Microsoft	News
Microsoft	News	is	a	nice	blend	of	classic	tabloid	and	modern	flat	design,	in
many	ways	it	is	simple	but	so	effective.

Website	link:	https://news.microsoft.com/stories/

https://news.microsoft.com/stories/

Johnny	Cupcakes
Johnny	Cupcakes	isn't	a	website	that	is	widely	known,	but	it	should	definitely	be
on	any	list	of	innovative	and	modern	designs.	The	blog	uses	scrolling	to
dynamically	change	the	background	image	for	different	blog	posts.

Website	link:	http://kitchen.johnnycupcakes.com/

http://kitchen.johnnycupcakes.com/

TESCO	Living
TESCO's	blog	is	similar	to	Microsoft's,	but	it	uses	a	really	big	image
slider/carousel	that	helps	highlight	the	company's	latest	and	greatest.

Website	link:	https://www.tescoliving.com/

https://www.tescoliving.com/

	

Setting	up	the	base	project
We	could	start	with	the	Reusable	Project	Template	that	we	created	back	in	Chapter
3,	Reusable	Project	Template,	which	would	be	more	than	adequate.	Most	of	the
additions	from	project	1	(single	page	website)	are	no	longer	needed,	but	some
are	generic	such	as	the	creation	of	a	JavaScript	file.	So	we	will	go	through	the
code	from	the	end	of	the	previous	chapter	and	refactor	it	to	suit	the	blog	that	will
be	implemented	over	the	next	two	chapters.

	

	

	

	

Removing	all	unnecessary	files
Let's	start	by	removing	all	files	that	are	no	longer	needed	due	to	them	being
specific	to	the	single	page	project.	The	only	files	that	we	need	to	completely
remove	from	our	project	are	the	image	files,	so	remove	all	files/folders	from	the
Images	folder,	the	new	structure	should	look	as	follows:

Root

CSS

css

Images	(empty	folder)
php

JS

js

SNIPPETS

php

php

	

	

Refactoring	the	index.css	file
Now	let's	remove	all	code	from	the	index.css	file	that	was	added	purposely	for	the
single	page	website.	This	will	be	very	simple,	remove	all	code	other	than	the
styling	applied	to	the	body,	only	the	following	code	should	remain:

Refactoring	the	index.php	file
Now	let's	remove	all	unneeded	code	from	the	index.php	file.	Again,	this	is	very
simple,	remove	all	HTML	code	that	is	between	the	PHP	require_once	lines	of	your
index.php	file,	it	should	resemble	the	following:

Refactoring	the	HEADER.php
snippet	file
The	HEADER.php	file	for	the	most	part	will	remain	untouched.	The	only	change	we
will	make	is	to	remove	the	navigation	buttons	as	the	navigation	bar	will	only
allow	the	user	to	go	to	the	home	page.	This	can	be	achieved	by	clicking	the
image/logo	in	the	navigation	bar.	Remove	the	following	code:	

You	might	be	wondering	why	we	left	the	unordered	list	and	only	removed	its
items.	Leaving	it	forces	the	search	input	and	Search	button	to	remain	anchored	to
the	right.	This	section	from	the	HEADER.php	file	will	now	look	as	follows:	

Refactoring	the	index.js	file
Just	as	we	did	with	the	index.css	and	index.php	files,	we	will	remove	most	of	the
code	from	the	index.js	file.	Remove	all	code	first	function	so	the	code	looks	as

follows:	

We	are	now	done,	the	website	will	look	similar	to	the	following	screenshot:	

This	refactored	project	can	be	found	on	the	GitHub	page	https://git
hub.com/PacktPublishing/Responsive-Web-Design-by-Example/tree/master

https://github.com/PacktPublishing/Responsive-Web-Design-by-Example/tree/master

	

What	will	our	blog	home	page
look	like?
Earlier	in	this	chapter,	we	looked	at	many	fantastic	and	innovative	blog
examples.	Gawker	is	a	nice	clean	blog	that	is	used	by	many	surfers	around	the
world,	but	we	will	go	with	the	layout	presented	on	the	TESCO	blog	as	it	has	a
variety	of	features.	This	will	serve	as	an	excellent	foundation	for	more	advanced
blogs.

You	probably	noticed	that	all	the	blogs	had	a	fixed	width	and	weren't	fluid,	this
is	a	very	common	layout	for	blogs.	Though	this	isn't	written	in	stone	and	a	fluid
layout	can	be	used,	tabloid	style	websites	suit	this	fixed	width	layout,	we	will
also	be	using	this	type	of	layout	for	our	blog.

Fluid	spans	the	full	width	of	the	browser	and	fixed	width	does,	but
only	to	a	set	limit	that	varies	from	framework	to	framework.	This
limit	is	an	industry	standard.

	

	

	

Implementing	the	blog	home	page
section
Our	blog	home	page	will	consist	of	two	main	sections:

Image	slider/carousel	to	showcase	blog	posts
All	blog	posts	are	presented	using	cards

Implementing	the	image	slider
The	first	section	will	contain	an	image	slider,	also	known	as	a	carousel,	which	is
intended	to	display	highlighted	posts/content.

Simple	image	slider
Firstly,	we	will	create	an	image	slider	that	automatically	scrolls	and	has	no
buttons	or	captions.

Add	the	following	code	to	the	index.php	file:	

Let's	run	through	the	lines	of	code	we	just	added:

Line	3	adds	a	fixed	width	container,	nothing	new	here.
Line	4	adds	a	row,	again	nothing	new	here.
Line	5	adds	a	div	that	spans	all	12	columns	on	all	screen	sizes.
Line	6	adds	the	carousels	parent	container	with	the	functionality	set	to	slide
automatically.
Line	7	creates	the	inner	section	to	store	all	the	different	slides.
Line	8	creates	a	carousel	item/slide	and	is	set	to	active	so	it	is	displayed
first.
Line	9	creates	an	image	to	be	displayed	in	the	slide
The	remaining	code	simply	repeats	the	first	slide	two	more	times	without
them	being	set	to	active.	I	have	chosen	to	use	the	same	image,	but	different

images	can	easily	be	used.

The	src	tag	can	easily	be	changed	to	replace	the	image	with	a	local
one	or	one	stored	on	a	server/CDN.

The	image	used	in	the	carousel	is	from	http://res.cloudinary.com/dmliyxggm/image/uplo
ad/v1511700177/large1_kfvfzm.jpg

All	this	produces	the	following	result:	

On	your	screen	you	will	see	the	carousel	sliding	between	slides.	But	there	is
something	wrong,	I	would	recommend	going	to	the	original	image	as	it	looks
like	this:	

http://res.cloudinary.com/dmliyxggm/image/upload/v1511700177/large1_kfvfzm.jpg

The	image	in	the	carousel	has	been	squashed,	the	severity	of	this	will	depend	on
the	exact	width	of	the	browser.	Try	resizing	the	browser	and	see	what	happens,	it
definitely	isn't	what	we	would	expect,	yes	the	width	should	adjust,	but	the	height
should	scale	along	with	it	hence	maintaining	the	aspect	ratio.

To	do	this	is	extremely	simple,	first	add	a	class	of	carouselImage	to	each	image
inside	of	the	carousel's	slides	like	so:	

Now	add	the	following	styling	code	to	the	index.css	file:	

This	will	now	ensure	that	the	image	covers	100%	of	the	rows	width	and
dynamically	adjusts	the	height	to	maintain	the	original	aspect	ratio.	The	great
thing	about	this	implementation	is	it	allows	images	of	any	ratio,	thus	reducing
more	potential	changes	for	you	as	the	developer.	The	website's	carousel	now
looks	as	follows:	

Adding	back	and	forward	buttons
to	the	slider
At	the	moment	our	carousel	has	three	slides,	but	imagine	if	it	had	10	and	you
missed	a	particular	slide	with	the	information	you	wanted.	It	wouldn't	be	a	very
good	user	experience	if	you	had	to	wait	for	it	to	come	back	for	you	to	just	miss	it
again.	Luckily	we	can	alleviate	this	nuisance	with	buttons	that	provide	linear
navigation.

First	we	need	to	add	an	id	to	the	carousel	container	as	this	will	be	used	to	link	the
backward	and	forward	buttons.	Simply	add	an	id	of	AwesomeCarousel	like	so:

Now	add	the	following	code	below	the	inner	carousel	container:

Let's	go	through	the	code	we	added	line	by	line:

Line	21	adds	the	back	button	container,	which	also	links	to	the	carousel
using	the	ID	we	added
Line	22	adds	the	back	icon
Line	23	is	intended	for	screen	readers
Line	26	adds	the	forward	button	container,	which	also	links	to	the	carousel
using	the	ID	we	added
Line	27	adds	the	forward	icon
Line	28	is	intended	for	screen	readers

This	produces	the	following	navigation	system	within	the	carousel:

Bootstrap	goes	next	level	genius	with	the	carousel	buttons	as	you	don't	need	to
specifically	click	on	the	button,	but	merely	that	edge	of	the	carousel	to	navigate.
Give	it	a	go	and	see	what	you	think.

Carousel	indicators
We	have	an	awesome	fully	functional	carousel,	but	what	if	the	user	wants	to	go
to	a	specific	slide,	do	they	keep	clicking	until	they	get	there?	Again	this	poor
user	experience	will	deter	users	from	using	our	website.

This	is	where	indicators	come	to	the	rescue.	They	are	essentially	buttons	to
easily	navigate	directly	to	a	specific	slide.	Add	the	following	code	above	the

inner	carousel	div:	

Let's	go	over	the	new	code	line	by	line:

Line	7	adds	a	list	of	indicators,	which	will	form	the	basis	of	our	navigation
Line	8	adds	the	first	indicator	and	links	it	to	the	first	slide	and	sets	it	to
active
Line	9	adds	the	second	indicator	and	links	it	to	the	first	slide	and	sets	it	to
active
Line	10	adds	the	third	indicator	and	links	it	to	the	first	slide	and	sets	it	to
active

The	active	class	should	match	the	slide	number	it	is	applied	to	so	it
loads	correctly.
As	you	are	most	likely	aware,	many	aspects	of	computing	start	at	0
and	not	1,	this	is	also	the	case	for	the	indicators.
For	every	slide	added/removed	make	sure	the	same	changes	are
made	to	the	indicators.

All	of	this	produces	the	following	result:	

We	now	have	some	really	awesome	indicators	at	the	bottom	for	improved
navigation.

Captioning	our	carousel
This	is	the	final	part	of	our	carousel,	adding	some	captions.	It	is	very	common
for	carousel	slides	to	have	individual	text,	you	could	add	it	to	the	image,	but	this
text	usually	is	slide-specific	and	can	easily	change.	Using	a	normal	image
without	the	captioned	text	allows	it	to	be	reused	in	other	areas	thus	reducing	time
creating/sourcing	new	images.

Captions	are	very	easy	to	add,	simply	update	any	carousel	item	with	the
following	code	to	add	a	caption	header	and	body:	

Let's	go	over	the	new	code	line	by	line:

Line	17	adds	a	div	to	store	all	the	caption	data	using	bootstrap	classes.	D-md-
block	is	an	important	class	as	it	sets	the	caption	block	to	only	appear	on
screen	sizes	that	are	medium	or	larger.	This	can	be	easily	changed	to	show
the	caption	on	different	screen	sizes	using	the	information	covered	in
Chapter	2,	What	Is	Bootstrap,	Why	Do	We	Use	It?.
Line	18	adds	a	header	for	the	slide's	caption.
Line	19	adds	the	captions	main	body.

I	have	only	added	a	caption	to	the	first	slide,	but	you	can	easily	add	it	to	any	of
the	slides.	I	would	recommend	doing	this	as	an	extra	task.

This	will	produce	the	following	caption	on	the	first	slide	on	screen	sizes	that	are
medium	or	larger:	

The	carousel	is	now	complete,	but	Bootstrap	as	usual	is	awesome	and	provides	a
plethora	of	functionality	to	manipulate	the	carousel	using	JavaScript.	To	see
more	information	regarding	this,	check	out	the	following	link	https://v4-alpha.getb
ootstrap.com/components/carousel/

The	slides	can	easily	be	enclosed	within	<a	href>	tags	to	allow
navigation	to	a	blog	post	or	an	external	website.

https://v4-alpha.getbootstrap.com/components/carousel/

Implementing	the	blog	posts
Now	we	will	implement	the	blog	posts	on	the	home	page,	these	will	not	be	the
full	post,	but	a	snippet	to	get	the	user's	appetite	wet	and	entice	them	to	click	on
it.

Let's	take	a	look	at	the	blog	post	preview	from	the	TESCO	blog:	

The	preceding	post	consists	of	the	following:

A	thumbnail	image
Category
Title
Brief	description
Share	button,	which	when	clicked	shows	the	following	buttons:

TESCO's	blog	uses	tiles	to	display	the	posts,	Bootstrap	has	a	really	cool	feature
called	cards	that	provide	a	very	similar	look	and	feel.

For	more	information	about	the	card	component	in	Bootstrap	check	out	the
following	link:	https://v4-alpha.getbootstrap.com/components/card/

https://v4-alpha.getbootstrap.com/components/card/

Adding	cards
Now	we	all	add	some	cards	to	our	home	page,	simply	add	the	following	code
after	the	row	that	contained	the	carousel:	

Let's	go	over	the	code	line	by	line:

Line	1	adds	a	row	like	we	have	already	done	a	million	times	already.
Line	2	adds	a	div	that	will	store	a	single	card.	The	classes	provide	the
following	layout:

Large	screen	sizes	will	display	three	cards	on	the	same	row
Medium	screens	will	display	two	cards	on	the	same	row
Small	and	extra	small	screen	sizes	will	display	a	single	card	on	each
row

Again	row	refers	to	the	literal	row	and	not	the	row	class.

Line	3	adds	a	Bootstrap	card.
Line	4	creates	an	image	enclosed	in	a	link	to	navigate	to	the	post	page
which	will	be	created	and	implemented	in	the	next	chapter.	Clicking	on	it	as
of	now	will	produce	an	error,	don't	worry	this	will	be	fixed	in	the	next

chapter.
Line	6	adds	a	section	that	will	contain	the	text	for	the	card.
Line	7	adds	a	title	to	the	card	that	is	also	linked	to	the	post	page.
Line	9	adds	a	paragraph	to	entice	the	viewer	and	provide	some	information
regarding	the	post.

I	have	only	added	one	post	in	the	preceding	code.	But	to	add	more	merely
duplicate	the	following	code	and	make	any	of	the	following	relevant	changes:

Image
Title
Description	text
Link,	maybe	you	want	it	to	link	to	another	website

This	all	produces	the	following	result:	

As	you	can	see,	it's	all	a	bit	of	a	mess	and	the	image	size	isn't	constrained	to	the
card.	Fortunately,	to	do	this	only	requires	a	single	line	of	CSS	code.	First	add	a
class	of	cardImage	to	the	card	images	like	so:	

Add	the	following	style	code	to	the	index.css	file:	

This	will	now	produce	the	following	more	elegant	card	layout:	

But	there	are	still	two	small	problems.	The	first	is	that	there	is	no	gap	at	the
bottom	of	each	card,	the	second	there	is	no	gap	between	the	carousel	and	the
cards.	Fortunately	for	us	this	is	extremely	easy	to	fix,	add	a	class	of	cardContainer

to	the	following	div:	

Add	the	following	style	code	to	the	index.css	file:	

This	all	produces	the	following	amazing	card	layout:	

And	we	are	done,	the	card	system	and	the	carousel	is	now	fully	implemented	and
provides	our	blog	with	an	amazing	responsive	blog	home	page.	As	usual	I
recommend	resizing	the	browser	to	see	how	it	responsively	reacts	to	our
implementation.

	

Summary
In	this	chapter,	we	implemented	the	blog's	home	page,	which	will	serve	as	a
great	foundation.	The	card	system	we	used	is	very	common	on	a	wide	range	of
social	networks.

In	the	next	chapter,	we	will	embark	on	the	journey	to	create	a	blog	post	page	to
display	more	detail	about	a	blog	post.

	

	

	

	

Creating	the	Blog	Posts	Page
This	chapter	will	finish	our	blog.	We	will	create	the	post	page,	which	will
display	a	blog	post	in	full	detail	instead	of	a	preview.	We	will	cover	creating	a
new	page	using	our	Reusable	Project	Template.

In	this	chapter,	we	will	cover	the	following	topics:

Bootstrap/HTML	headers
Bootstrap	showcase	images
HTML	paragraphs
Media	embedding
Debugging	and	testing	responsive	design

	

	

	

Blog	post	page	examples
Before	we	take	a	look	at	some	blog	post	examples,	let's	think	about	some	of	the
most	important	things	a	blog	post	page	needs:

Title
Something	to	entice	the	reader,	usually	an	image
A	quick	overview	of	the	article

Now,	let's	go	through	some	examples	of	blog	post	pages	for	further
enlightenment,	which	will	aid	in	developing	our	very	own.	We	will	look	at	the
same	websites	that	we	covered	in	the	preceding	chapter.

	

	

	

TechCrunch
TechCrunch	has	a	lot	going	on	outside	of	the	main	post,	from	popular	posts	to
newsletters	and	other	latest	news.

Its	website	link	is	https://techcrunch.com/2017/07/16/lenovo-teases-augmented-reality-head
set-for-new-star-wars-experience/

Any	blog	post	from	TechCrunch	is	good	to	view;	note	that	it	doesn't
have	to	be	the	same	one	as	mentioned	here.

https://techcrunch.com/2017/07/16/lenovo-teases-augmented-reality-headset-for-new-star-wars-experience/

Gawker
Gawker	is	simple,	but	elegantly	effective.	The	blog	content	is	displayed	in	a
linear	fashion	using	simple	HTML	elements.

Its	website	link	is	http://gawker.com/letters-from-our-exes-1785587207

http://gawker.com/letters-from-our-exes-1785587207

Microsoft	News
Microsoft	News	has	nice	background	animations	and	images,	and	is	similar	in
layout	to	Gawker,	but	more	flashy.

Its	website	link	is	https://news.microsoft.com/stories/block-by-block/

https://news.microsoft.com/stories/block-by-block/

Johnny	Cupcakes
Johnny	Cupcakes	is	similar	to	Gawker	and	Microsoft,	but	it	uses	very	big
pictures	to	illustrate	the	purpose	of	the	article.

Its	website	link	is	http://kitchen.johnnycupcakes.com/blog/2016/08/johnny-cupcakes-x-san-f
rancisco/

http://kitchen.johnnycupcakes.com/blog/2016/08/johnny-cupcakes-x-san-francisco/

Tesco	Living
Tesco's	page	is	clean;	however,	it	still	incorporates	some	cool	features	such	as
the	popular	and	recommended	sections.

Its	website	link	is	https://www.tesco.com/

https://www.tesco.com/

	

What	will	our	blog	post	page
consist	of?
You're	probably	wondering	what	our	page	will	look	like.	Drum	roll,	we	will	base
it	on	the	Tesco	page.

Let's	take	a	look	at	what	the	page	consists	of.	There	are	two	main	sections:

Post	content
Extra	navigation	to	popular	and	recommended	articles

This	is	the	first	instance	where	we	will	essentially	have	a	sidebar.	Take	a	look	at
the	Tesco	page	and	see	how	it	looks	on	different	devices.	As	you	can	probably
tell,	when	the	width	is	too	small	the	sidebar	becomes	a	new	section	below	it,
which	can	be	achieved	using	the	grid	skills	we	have	already	covered	multiple
times	in	previous	chapters.

	

	

	

	

What	does	the	post	content
consist	of?
We	now	know	the	overall	content	structure	of	the	post	page,	but	what	will	the
post	content	actually	contain?	If	you	take	a	look	at	the	Tesco	page,	you	will	note
the	following	items/sections:

Title
Social	share	buttons
Post	banner	image
Small	paragraph	to	grab	the	viewer's	attention
Main	body	which	consists	of	text	and	images
More	useful	links
Social	share	button	(same	as	the	ones	at	the	top	of	the	article)

We	will	follow	the	exact	same	layout	with	the	exclusion	of	the	social	buttons.
The	reason	for	this	is	simple,	we	have	completed	a	single	project	and	have
almost	completed	our	second,	the	social	buttons	implementation	will	be	left	as
an	extra	task	for	you.

	

	

	

	

What	does	the	popular	and
recommended	sidebar	consists
of?
The	popular	and	recommended	sections	are	both	structured	the	same	way;	they
both	consist	of	the	following	items:

Title
Underline	to	separate	the	title	and	content
Section	to	group	each	item's	content:

Thumbnail	image
Item	title

We	are	now	ready	to	start	coding	our	blog	post	page.

	

	

	

Implementing	the	blog	post	page
Before	we	can	even	create	the	main	content	body	and	sidebar,	we	will	first	need
a	new	file.	If	you	recall,	in	the	previous	chapter,	we	linked	all	of	the	blog	post
previews	to	a	nonexistent	post.php	page.	Now,	we	will	finally	create	that	page;
simply	create	a	new	file	in	the	root	directory	alongside	index.php	called	post.php.
The	project	structure	will	now	be	as	follows:

CSS

Images

index.php

JS

post.php

SNIPPETS

Now	the	directory	structure	is	in-line	with	the	preceding	screenshot,	we	can	truly
use	the	Reusable	Project	Template	we	set	up	in	Chapter	3.	Without	the	Reusable
Project	Template,	we	would	have	had	to	duplicate	all	the	header	and	footer	code
in	the	post.php	file	as	well.	Luckily	for	us,	all	that	is	required	are	the	two	require
lines	to	retrieve	the	header	and	footer	code.	Add	the	following	code	to	your

post.php	file:	

This	produces	the	following	unexciting	result:	

Don't	worry!	We	will	soon	be	adding	the	page's	main	content	and	sections.

Implementing	the	post's	main
content
We	know	what	the	main	content	section	will	contain—if	you	need	a	quick
refresher,	don't	worry,	go	back	to	the	start	of	this	chapter	and	take	a	look	at	the
examples	we	covered;	I'll	be	waiting	right	here	for	you.

Adding	the	blog	post	title	and
banner	image
Add	the	following	code	to	your	post.php	file:

Let's	go	over	the	new	code	line	by	line:

Line	1	adds	a	container	to	store	all	of	our	page's	content
Line	2	creates	a	row	to	store	the	main	section
Line	3	creates	a	div,	which	will	span	9	columns	on	bigger	screens;	on	small
screens,	it	will	span	12	columns
Line	4	adds	a	simple	title
Line	6	creates	a	big	image	to	be	used	as	the	post's	banner

The	code	we	just	added	produces	the	following	result:

Again,	as	we	did	in	the	preceding	section,	we	will	need	to	set	the	image's	width
to	always	be	100%.	Add	an	id	of	PostImageBanner	to	the	image,	like	so:

Now,	add	the	code	to	achieve	this	to	the	index.css	file:

The	reason	an	id	was	used	is	that	there	will	only	be	a	single	image
banner	for	each	post.	There	may	be	more	than	one	image,	but	they
will	have	a	different	style.

This	produces	the	following	result:

It	may	not	look	very	different.	However,	you	can	just	resize	the	browser	with
and	without	the	new	code	to	truly	see	the	benefit	of	this	minimal	but	crucial	CSS
implementation.

Adding	the	snapshot	paragraph
Now,	let's	implement	a	small	snippet	of	text	that	is	designed	to	draw	the	viewer's
attention	and	keep	them	on	the	page	and	reading.	It	is	very	common	for	this	to
be	a	question.	Add	the	following	code	just	after	the	image	created	in	the

preceding	section:	

We	have	created	a	simple	header;	you	can	add	some	color	to	it	and
use	a	different	font,	but	this	is	a	very	simple	element	of	the	main
content.	Now,	let's	see	what	this	looks	like:	

As	per	usual,	it	needs	some	modifications;	there	needs	to	be	a	bigger	gap
between	the	image	and	text	to	make	it	look	more	professional.	We	will	add	a
margin	to	the	bottom	of	the	image.	Luckily,	we	already	have	a	way	of	accessing
the	image	through	its	id,	which	was	added	earlier	in	this	chapter.	Now,	add	the

following	styling	in	the	index.css	file:	

We	added	a	margin	at	the	bottom	of	the	image	of	35	pixels;	this	value	can	be
tweaked	to	suit	your	needs.	This	now	moves	the	text	down,	as	can	be	seen	here:	

Adding	the	body
Now,	we	will	add	the	main	article	that	viewers	have	come	to	read.	This	can
consist	of	a	wide	variety	of	elements,	such	as	the	following:

Text
Images
Links
Videos
Forms

Essentially,	they	will	be	anything	that	can	be	added	to	a	website	and	can	be
placed	in	the	main	article	section.	We	will	keep	it	simple	and	add	some	text
along	with	an	image,	similar	to	the	Tesco	blog	article	we	discussed	earlier	in	this
chapter.	Add	the	following	code	below	the	snapshot	paragraph:	

It's	very	simple;	we	added	a	subheading	and	a	paragraph	along	with	an	image.
Naturally,	these	will	reflect	the	subject	of	the	article,	so	feel	free	to	change	them.

Let's	take	a	look	at	the	result:	

There	are	two	problems	that	need	to	be	addressed,	which	are	as	follows:

The	subheading	is	directly	below	the	snapshot	paragraph.	There	should	be	a
larger	gap	similar	to	the	poster	image	and	the	snapshot	paragraph.
The	image	is	too	big	and	needs	to	be	constrained.

First,	let's	deal	with	the	gap	issue.	Add	an	id	of	PostSnapshot	to	the	snapshot

paragraph:	

We	will	now	add	a	margin	to	the	bottom	of	the	snapshot	paragraph.	We	will
make	it	the	same	as	the	margin	below	the	poster	image	for	consistency.
However,	these	values	can	be	changed	and	can	also	be	different,	if	you	so	desire:

This	will	move	the	main	article	down,	as	can	be	witnessed	here:	

One	problem	fixed,	one	more	to	go.	Now,	let's	constrain	the	image	so	that	it
doesn't	overflow.	It	may	not	look	like	it's	overflowing	at	the	moment,	but	once
we	add	the	sidebar,	it	will;	so,	let's	fix	this	problem	now.	First,	add	a

postArticleImage	class	to	the	image:	

We	use	a	class	as	this	will	allow	the	styling	that	will	follow	to	be	easily	applied
to	other	images	within	the	main	article,	as	it	is	a	common	practice	to	have
multiple	images.	Now,	add	the	following	styling	code	to	the	index.css	file:	

I	have	chosen	a	width	of	75%	of	the	parent	container	to	not	overpower	the
importance	of	the	poster	image	at	the	top.	This	now	produces	the	following

result:	

This	has	fixed	the	overflow	problem	but	created	another	one.	The	image	isn't
centered;	while	this	isn't	necessary,	it	does	improve	the	overall	layout.	To	do	this,
all	we	have	to	do	is	add	a	margin	to	the	left	of	the	image,	as	follows:	

You're	probably	thinking	where	did	the	12.5%	value	come	from?	It's	actually
extremely	simple,	but	genius.	We	have	an	image	that	has	a	width	of	75%	of	its
parent	container;	this	leaves	us	with	25%	in	the	container.	We	don't	want	to
move	it	25%,	as	this	will	align	the	image	to	the	right,	so	we	want	half	of	the
remaining	space,	which	is	12.5%.	An	alternative	could	be	to	encapsulate	the
image	within	a	div	and	center	it	using	the	text	center	property.

If	the	width	of	the	image	is	changed,	then	the	margin	will	also	need
to	be	updated	using	the	process	discussed	above.

This	produces	the	following	result:

Now,	let's	move	on	to	the	final	part	of	this	main	body	section.

More	useful	links
We	are	almost	done.	It	is	extremely	common	for	blog	posts	to	have	some	useful
links	for	the	viewer;	these	can	be	internal	or	external	links.	There	is	nothing
more	to	it	than	that;	add	the	following	code	to	our	website:	

Feel	free	to	change	the	links	to	whatever	you	want	and	add	more	as	you	see	fit.
This	produces	the	following	result:	

That	dreaded	problem	is	back;	there	needs	to	be	more	of	a	gap	between	the
image	and	the	heading.	I'm	sure	that	you're	already	aware	of	how	to	do	this,	but
let's	quickly	recap.	Add	an	id	of	PostLinksHeader,	like	so:	

Now,	add	the	following	styling	to	the	index.css	file:	

We	added	a	margin	to	the	top	to	provide	a	gap	between	the	image	and	the	useful
links	section.	Let's	see	our	beauty:	

We	are	now	done	with	the	main	section	on	this	page;	let's	move	on	to	the	sidebar.

Implementing	the	sidebar
We	are	now	at	the	final	stage	of	this	chapter,	where	we	implement	a	sidebar	with
call	links	to	other	great	articles.	As	you	may	remember	from	earlier	in	this
chapter	,	we	added	a	div,	which	spanned	only	nine	columns	on	larger	screens,
and	the	remaining	three	are	for	the	sidebar.	To	access	them,	add	the	following
code	below	the	div	that	contains	all	the	main	content:	

The	code	we	added	simply	creates	a	div	to	contain	the	sidebar	and	adds	a	section
header	along	with	a	horizontal	rule.	This	will	produce	the	following	result:	

This	is	a	good	start,	but	the	horizontal	line	is	barely	visible;	I	wouldn't	blame	you
if	you	can't	see	it—it	is,	after	all,	that	faint.	We	will	override	the	border
properties	to	change	the	size	and	color.	First,	add	a	class	of	postSidebarLine	to	the

horizontal	rule	tag:	

Now,	add	the	following	code	to	the	index.css	file	to	override	the	default	properties

of	the	horizontal	rule	tag:	

We	simply	changed	the	height	of	the	border	to	7px	and	changed	the	color	to	the
one	used	on	the	Tesco	blog;	feel	free	to	change	these	properties	to	suit	your

vision.	This	all	produces	the	following	result:	

A	class	was	used	to	allow	multiple	sections	within	the	sidebar	to
adopt	the	same	style	using	a	single	code	base;	as	an	extra	task,	add
extra	sections	as	seen	in	the	Tesco	blog	website.

Now,	it	is	time	to	add	the	popular	links	along	with	a	thumbnail	to	attract	the
viewer.	Add	the	following	code	below	the	horizontal	tag:	

We	applied	another	column	system	to	the	containing	div,	as	the	sidebar	will
actually	appear	below	the	main	content	on	smaller	screens,	which	will	provide
more	room	horizontally	so	that	we	can	have	more	than	one	image	next	to	each
other	on	medium	screen	sizes.	I	have	added	a	file	locally,	but	as	usual	it	could	be
stored	online	via	a	CDN.	This	will	produce	the	following	result:	

As	you	can	see,	this	isn't	what	we	want	at	all;	the	image	is	having	the	same
problem	in	that	it	is	overflowing.	This	can	be	fixed	very	easily;	first,	add	a	class

of	postPopularImage	to	the	image:	

Now,	add	the	following	code	to	the	index.css	file	to	restrict	the	size	of	the	image:	

I	have	set	the	width	to	75px,	which	also	locks	the	height	as	well,	but	you	can
make	it	smaller	or	bigger	as	you	see	fit.	This	now	looks	a	lot	better,	as	can	be

seen	in	the	following	screenshot:	

We	are	almost	done;	by	default,	Bootstrap	applies	padding	to	a	lot	of	its	classes,
including	the	column	classes,	that	pushes	the	image	to	the	right.	Let's	remove
this	padding	which	will	provide	more	room	for	the	content.	Add	a	class	of
postPopularContainer	to	the	div	containing	the	popular	content,	like	so:	

Now,	add	the	following	code	to	the	index.css	file	to	remove	the	padding	from	the

left	and	right:	

As	you	can	see,	the	padding	has	been	removed:	

To	add	more	articles	in	the	sidebar,	simply	duplicate	the	following	code	and

make	the	appropriate	changes:	

This	is	what	it	will	look	like	with	multiple	article	previews:	

It's	lucky	we	checked	this	out,	as	there	is	no	gap	below	each	preview.
Fortunately	for	us,	we	just	added	a	margin	to	the	bottom	of	each	div	using	the
class	of	postPopularContainer	that	we	have	already	implemented:	

Now,	there	is	a	gap	below	each	article	preview,	as	follows:	

Let's	test	what	it	looks	like	on	a	medium	screen	where	the	sidebar	is	below	the

main	content:	

I	don't	know	about	you,	but	this	doesn't	look	the	way	it	should;	there	should	be
two	previews	next	to	each	other	on	each	row.	Luckily,	this	can	easily	be	fixed	by
enclosing	all	the	previews	within	a	div	that	has	a	class	of	row.	I'm	sure	you're	very
familiar	with	how	to	do	this	by	now.	Making	this	change	will	produce	the

following	result:	

Okay,	the	previews	are	properly	using	the	Bootstrap	column	classes	that	they
have,	but	their	content	is	slightly	overflowing;	this	is	due	to	the	padding	we
removed.	Remove	the	two	lines	that	we	added	in	the	index.css	file	to	remove	the
padding	from	the	left	and	right.	This	will	now	produce	the	following	result:	

Excellent!	We	are	now	all	done.	You	might	be	wondering	why	I	went	through	all
the	hassle	of	not	adding	the	row	div	and	padding	removal	code—this	was	to
demonstrate	one	of	the	common	pitfalls	and	how	to	resolve	it.

	

Further	extending	the	blog
If	you	take	a	look	at	the	examples	at	the	beginning	of	this	chapter,	you	will	note
that	they	have	other	content/features	that	we	didn't	cover.

It	would	be	great	if	you	could	tackle	some	of	these	extra	tasks	for	this	project:

Check	out	responsive	media	(video)	at	https://v4-alpha.getbootstrap.com/utiliti
es/responsive-helpers/

Animations	using	jQuery
Check	out	social	buttons	at	http://www.addthis.com/

Take	a	look,	think	of	your	own	ideas,	and	then	implement	them	to	see	how	you
can	further	extend	the	blog.

	

	

	

https://v4-alpha.getbootstrap.com/utilities/responsive-helpers/
http://www.addthis.com/

	

Summary
In	this	chapter,	we	implemented	the	blog	post	page,	and	we	completed	the
second	project	in	this	book	with	that.

The	next	chapter	will	start	the	third	project,	which	is	a	social	network,	and	it	will
cover	adding	a	really	cool	sidebar,	even	better	than	the	one	implemented	in	this
chapter.

	

	

	

Adding	a	Sidebar	to	the	Social
Network
This	chapter	will	help	you	start	the	social	network	using	the	preceding	code	base
and	add	a	sidebar	for	navigation.	We	will	be	incorporating	many	responsive
features	and	philosophies	when	creating	the	sidebar;	it	will	be	significantly	more
advanced	than	the	sidebar	in	the	blog.	We	will	do	the	sidebar	as	our	first	task,	as
it	is	more	complex	than	the	one	added	in	the	preceding	chapter.

The	topics	covered	in	this	chapter	are	as	follows:

Icons
Bootstrap	images
Bootstrap	cards/tiles
HTML	links
Collapsible	sidebar
Debugging	and	testing	Responsive	Design

	

	

	

Social	network	sidebar	examples
Let's	go	through	some	examples	of	sidebars	used	in	social	networks.	There	are
an	increasing	number	of	social	networks	to	choose	and	get	inspiration	from,	and
I'm	sure	that	you	have	your	own	favorites;	however,	I	would	always	recommend
that	you	check	all	of	them	out	first.

	

	

	

	

Facebook
Facebook	is	the	most	successful	social	network	in	human	history,	and,	most
likely,	every	reader	at	some	point	has	had	a	Facebook	account;	it	is	definitely
one	to	take	inspiration	from.	Facebook's	sidebar	isn't	collapsible	and	modern	as
some	of	the	other	examples	that	we	will	look	at;	it's	website	link	is	https://www.fac
ebook.com/

	

	

https://www.facebook.com/

	

Google+
Google+	may	not	be	the	first	social	network	you	visit,	but	with	more	than	100
million	active	users	and	a	consistently	modern	design,	it	deserves	a	place	on	our
list.	This	sidebar	is	collapsible	unlike	Facebook's;	it's	website	link	is	https://plus.
google.com/

https://plus.google.com/

YouTube
YouTube's	design	has	similarities	to	Google+	for	obvious	reasons,	but	it	is	used
to	display	different	information;	again,	it	can	be	hidden	using	the	burger	button
located	at	the	top	left	of	the	page;	it's	website	link	is	https://www.youtube.com/

https://www.youtube.com/

Minds
Minds	puts	more	emphasis	on	icons	for	sidebar	navigation,	yet	it	is	still
extremely	effective	in	providing	information	to	the	user;	it's	website	link	is	https:
//www.minds.com/

https://www.minds.com/

	

Myspace
Tom	Anderson	may	be	traveling	the	world	taking	amazing	photos	(check	them
out,	they	are	truly	amazing),	but	his	social	network	lives	on.	Yes,	it's	not	the	top
social	network	in	the	world,	not	by	any	means,	but	it	constantly	updates	its
design	with	a	modern	theme;	it's	website	link	is	https://myspace.com

	

	

	

https://myspace.com

	

What	will	our	social	network
sidebar	consist	of?
You're	probably	wondering	what	our	social	media	sidebar	will	look	like;	it	will
contain	the	following:

Links	in	the	form	of	text
Images	for	icons
Responsive	collapsible	design

Although	we	implemented	a	sidebar	in	the	preceding	chapter,	it	was	very	basic
and	wasn't	truly	a	sidebar	in	the	conventional	sense.	Our	sidebar	will	always	be
at	the	side;	when	the	screen/browser	is	small,	the	sidebar	will	automatically	hide
and	provide	a	burger	button	to	show	the	sidebar.	Yes,	the	button	that	shows	and
hides	content	like	a	sidebar	with	three	horizontal	lines	is	called	a	burger	button.

	

	

	

	

Implementing	the	sidebar
Before	we	can	start,	we	will	need	a	base	to	work	with.	Luckily,	in	Chapter	7,
Creating	the	Blog	Posts	Homepage,	we	did	just	this—we	stripped	away	all	code
specific	to	the	first	project	and	used	that	as	our	base	for	the	blog.	Now,	we	can
use	that	same	base	for	the	social	network.	If	you	do	not	have	it,	feel	free	to
access	it	from	the	GitHub	page.

The	sidebar	that	we	will	implement	is	based	on	the	code	from	https:
//www.codeply.com/go/8ESO56VMns/bootstrap-4-sidebar-collapse/

	

	

	

https://www.codeply.com/go/8ESO56VMns/bootstrap-4-sidebar-collapse/

Implementing	the	burger	button
Let's	add	it	to	our	navigation	bar.	We	won't	link	it	with	the	sidebar	yet	because	it
does	not	exist,	but	it	will	be	ready	when	the	time	for	it	comes	later	in	this
chapter.

First,	we	will	include	a	style	sheet	called	Font	Awesome,	which	is	great	for
really	cool	and	useful	icons	using	CSS.	Add	the	following	code	to	the	HEADER.php

file:	

A	newer	version	of	Font	Awesome	will	work	as	well.	For	more
information	regarding	Font	Awesome,	check	out	http://fontawesome.io
/

Now	that	we	can	use	cool	icons,	let's	add	a	burger	button.	Consider	the	following

http://fontawesome.io/

navbar	brand	icon	code:	

Replace	it	with	the	following	code:	

The	navigation	bar	will	look	like	the	following:	

In	the	preceding	code,	we	replaced	our	logo	by	simply	creating	a	button,	which
targets	an	element	with	an	id	of	sidebar,	which	we	will	implement	soon.	We	use
functionality	from	Font	Awesome	to	retrieve	the	icon;	for	more	information	visit
the	Font	Awesome	website	as	mentioned	earlier	in	this	chapter.

Implementing	the	sidebar	HTML
side
Now	that	we	have	a	button	to	show	and	hide	the	sidebar,	we	actually	need	a
sidebar,	otherwise	the	button	is	useless.	Add	the	following	code	at	the	bottom	of
the	HEADER.php	file:

Let's	go	over	the	code	we	just	added:

Line	36	creates	a	container	to	store	the	sidebar	and	the	page's	main	content.
Line	37	adds	a	row	to	store	the	content.
Line	38	creates	a	div	to	contain	the	sidebar,	the	classes	applied	should	be	all
very	straight	forward.
Line	39	adds	a	div	to	store	the	list	of	items,	which	will	be	the	buttons/items
in	the	sidebar.
Line	40	adds	a	button,	which	is	also	a	dropdown	within	the	sidebar.
Line	41	adds	the	drop-down	container.
Line	42	to	Line	44	adds	the	drop-down	buttons/items.
Line	45	simply	adds	a	button	without	any	dropdown	or	other	surprises.

Line	46	and	Line	47	close	the	sidebar	and	list	group	div.
Line	49	adds	a	container	to	store	the	main	content	of	the	page.	When	the
screen	size	is	medium	or	larger	it	is	capped	at	a	width	of	9	columns,	which
allows	the	sidebar	to	be	displayed	next	to	it.	On	smaller	screens,	the	sidebar
is	hidden	by	default.

You're	probably	thinking	we	haven't	closed	a	few	elements;	that	is	correct.	This
is	due	to	the	fact	that	the	main	content	is	not	in	the	header	file	but	in	another	file,
and	the	footer	is	also	in	another	file.	We	will	close	off	the	elements	after	the
footer	in	the	FOOTER.php	file,	like	so:

This	produces	the	following	result:

The	sidebar	isn't	much	to	look	at,	but	it	will	be	very	soon.	I	urge	you	to	resize
your	browser	to	see	how	the	sidebar	reacts	to	this	change	in	size,	a	bit	buggy	but
pretty	cool	even	if	I	write	so	myself.	Once	the	CSS	is	implemented,	the	sidebar
will	look	and	work	a	lot	better.

The	icons	next	to	the	buttons	are	from	the	Font	Awesome	style	sheet
we	included	earlier	in	this	chapter	and	were	applied	using	classes.

Implementing	the	sidebar	CSS
side
We	now	have	the	HTML	implemented,	but	it	looks	okay,	sorry,	it	looks	rubbish
with	no	proper	styling.	Now,	we	will	add	the	CSS	to	style	the	sidebar.	Unlike	the
code	we	have	added	so	far	in	this	book	where	we	would	add	a	little	bit	and	then
run	it,	we	will	now	add	the	entire	code	and	then	run	it.	The	code	will	be	added	in
chunks	and	explained	because	otherwise	it	wouldn't	be	legible	to	read	if	we	put	it
all	on	one	page,	and	it	would	be	very	overwhelming.

Start	off	by	adding	the	following	code	to	the	bottom	of	the	index.css	file:	

The	code	we	added	does	the	following:

The	#SidebarToggle	style:	This	makes	the	toggle	sidebar	button	we	added	in
the	navigation	menu	white.	Change	this	as	you	desire.
The	#sidebar	style:	This	ensures	that	the	sidebar	is	above	the	main	content
and	restricts	its	width.	The	width	is	restricted	as	it	would	get	larger	and
larger	with	the	screen	sizes	width,	which	can	begin	to	look	ugly.
The	#sidebar	.list-group	style:	This	sets	the	background	color	and	ensures
that	the	sidebar	is	as	tall	as	the	web	browser	by	using	viewport	units,	which
allow	you	to	get	a	browser's	current	size—in	this	case,	the	height.

Let's	add	the	next	batch	of	code:	

The	preceding	code	does	the	following:

The	#sidebar	i	style	:	This	provides	a	small	but	effective	gap	between	the
icon	and	text	in	the	sidebar.
The	#sidebar	.light-group-item	style:	This	provides	a	more	fitting	color
scheme	and	style	to	the	sidebar	buttons/items.	Feel	free	to	change	the	colors
to	match	your	website's	style.
The	#sidebar	.list-group-item:not(.collapsed)	style:	This	changes	the
background	color	of	the	sidebar	item	that	is	active	(also	known	as	opened).
Feel	free	to	change	the	color	as	usual.
The	#sidebar	.list-group	.list-group-item[aria-expanded="false"]::after	style:	This
simply	adds	the	arrow	next	to	the	drop-down	item	to	indicate	to	the	user
that	the	item	is	a	drop-down	menu.

Lets	add	the	next	batch	of	code:	

The	preceding	code	does	the	following:

The	#sidebar	.list-group	.list-group-item[aria-expanded="true"]	style:	Changes
the	background	color	of	the	drop-down	parent	item.
The	#sidebar	.list-group	.list-group-item[aria-expanded="true"]::after	style:
Changes	the	drop-down	arrow	after	it	has	been	opened	to	show	this	change.
The	#sidebar	.list-group	.collapse	.list-group-item,	#sidebar	.list-group
.collapsing	.list-group-item	style:	Sets	how	far	drop-down	menu	items	should
be	from	the	left.
The	#sidebar	.list-group	.collapse	>	.collapse	.list-group-item,	#sidebar	.list-
group	.collapse	>	.collapsing	.list-group-item	style:	Sets	second-level	drop-
down	menu	items	further	to	the	right	than	first	level.	Although	our	menu
does	not	have	more	than	one	level,	it	can	easily	be	implemented,	and	this
shows	the	styling	behind	it.

Let's	add	the	next	bit	of	code:	

You	may	have	noted	that	we	started	a	media	query	but	didn't	close	it	off;	this	is
due	to	there	being	more	code	that	will	be	added	in	the	next	batch	of	code.

The	styling	is	only	applied	to	extra	small	and	small	screen	sizes,	as	can	be	seen
by	the	max-width	condition.	First,	let's	go	over	what	the	code	we	just	added	does:

The	#sidebar	style:	Sets	the	collapsed	layout	to	show	only	icons
The	#sidebar.show	style:	Ensures	that	the	collapsed	menu	is	visible	and	on	the
left-hand	side
The	#sidebar::-webkit-scrollbar	style:	Ensures	that	there	is	no	scrollbar
The	#sidebar,	#sidebar	.list-group	style:	Sets	a	minimum	width

Let's	add	the	last	batch	of	code	to	complete	the	media	query:	

The	preceding	code	does	the	following:

The	#sidebar	.list-group	.collapse.show,	#sidebar	.list-group	.collapsing	style:
Ensures	that	the	drop-down	menus	are	still	positioned	correctly
The	#sidebar	.list-group	>	.list-group-item	style:	Ensures	that	the	icons	are
positioned	in	the	middle	of	the	collapsed	sidebar
The	#sidebar	.list-group	>	.list-group-item[aria-expanded="true"]::after,	#sidebar
.list-group	>	.list-group-item[aria-expanded="false"]::after	style:	Ensures	that
the	drop-down	icons	are	hidden	and	not	overlapping	the	main	content

Now,	let's	add	the	final	code:

The	last	batch	of	code	does	the	following:

The	.collapse.show	style:	Ensures	that	the	menu	is	visible
The	.collapsing	style:	Ensures	that	the	menu	is	visible	and	of	the	right	size
The	.collapsing.width	style:	Ensures	that	the	menu	is	visible	and	of	the	right
size,	similar	to	the	style	before	it

We	have	now	added	all	the	code	for	the	collapsible	sidebar.	There	was	a	lot,	so
feel	free	to	go	over	it	again	to	ensure	that	you	have	everything	and	you
completely	understood	it.	Let's	take	a	look	at	the	fruits	of	our	labor:	

Looking	good;	let's	take	a	look	at	what	the	sidebar	looks	like	on	smaller	screen

sizes:	

The	sidebar	looks	excellent;	all	the	hard	work	has	paid	off.

The	best	way—according	to	me—to	see	what	a	code	does	is	to
modify	it	and	remove	it	temporarily	and	then	see	the	result.

Summary
In	this	chapter,	we	covered	adding	a	collapsible	sidebar	and	started	our	social
network	project.	The	next	chapter	will	cover	implementing	the	home	page	in-
line	with	the	sidebar.

	

Creating	the	Home	page	in	Our
Social	Network
In	this	chapter,	we	will	continue	with	the	social	network	project	that	we	started
in	the	preceding	chapter.	We	will	add	the	home	page	content	to	display	a
timeline	of	the	user's	social	content.	The	timeline	shows	all	the	content	the	user
has	posted	and	also	from	other	users	they	are	following.	This	provides	an
excellent	means	for	attracting	the	users	when	the	website	is	first	launched.	This
will	be	in	conjunction	with	the	previous	chapters	sidebar	to	provide	a	familiar
layout.

In	this	chapter,	the	following	topics	will	be	covered:

Bootstrap	cards/tiles
Bootstrap	thumbnails
Bootstrap	sections
Multiline	text	input
Form	input
JavaScript	AJAX	form	submission
Debugging	and	testing	responsive	design

	

	

Social	network	timeline	examples
Let's	go	through	some	examples	of	home	pages/timelines	in	social	networks.
There	are	a	plethora	of	social	networks	to	get	inspiration	from.	I'm	sure	that	you
have	your	own	favorites,	and	I	would	always	recommend	that	you	check	them
out	as	well.

	

Facebook
Facebook	is	the	most	successful	social	network	in	human	history,	and	most
likely,	every	reader	at	some	point	has	had	a	Facebook	account;	it	is	definitely
one	to	take	inspiration	from.	Facebook's	main	page	isn't	as	responsive	and
modern	as	some	of	the	other	examples	that	we	will	look	at,	but	it	works.	The
website	link	for	Facebook	is	https://www.facebook.com/

	

https://www.facebook.com/

	

	

Google+
Google+	may	not	be	the	first	social	network	you	visit;	however,	with	over	100
million	active	users	and	a	consistently	modern	design,	it	deserves	a	place	on	our
list.	This	timeline	is	responsive	unlike	Facebook's.

Let's	take	a	look	at	its	website	link	https://plus.google.com/:

https://plus.google.com/

	

YouTube
YouTube's	design	has	similarities	to	Google+	for	obvious	reasons,	but	it	is	used
to	display	different	information;	it	is	responsive	but	not	as	responsive	as
Google+.	This	is	due	to	it	being	more	popular	than	Google+,	and	popular
platforms	have	slower	progression.

Let's	take	a	look	at	its	website	link	https://www.youtube.com/:

	

	

https://www.youtube.com/

	

Twitter
Twitter	uses	a	simple	card	system,	similar	to	Google+,	but	the	cards	are	placed
one	after	another	vertically.

Let's	take	a	look	at	its	website	link	https://twitter.com/:

https://twitter.com/

Medium
Medium	doesn't	have	a	sidebar,	so	the	entire	page	is	the	main	content.	It	uses	a
mixture	of	jumbotron	style	banner	and	card	system.

Let's	take	a	look	at	its	website	link	https://medium.com/:

https://medium.com/

	

What	will	our	social	network
timeline	consist	of?
You're	probably	wondering	what	our	social	media	timeline	will	look	like.	We
will	use	the	Twitter-style	layout,	which	was	covered	earlier;	it	will	contain	the
following	things:

A	multiline	input	field	for	posting	content
Bootstrap	cards	(similar	to	what	we	used	in	the	blog	homepage)
Images

User	thumbnail
Social	post

A	singleline	text	to	show	username
A	singleline	text	to	show	the	time	content	was	posted
A	multiline	text	for	post	description
Responsive	design

We	have	already	used	cards	in	the	blog,	which	worked	amazingly	by	the	way.
We	will	implement	them	from	the	start	again,	as	the	layout	will	be	slightly
different.	As	usual,	add	your	own	twist	to	them	using	HTML	elements	and	CSS
to	style	them.	Although	Twitter's	timeline	isn't	very	responsive,	ours	will	be;	the
content	will	simply	shrink	as	the	browser	size	changes.

	

	

	

Implementing	the	timeline
We	will	continue	with	the	code	from	the	preceding	chapter,	which	implemented
a	fully	working	and	collapsible	sidebar.

The	timeline	consists	of	the	following	two	main	sections:

The	input	section
The	timeline/feed	section

Implementing	the	input	section
The	input	field	can	vary	from	social	media	site	to	social	media	site,	and	how	it
appears	can	also	vary.	On	Twitter,	it	is	simple	and	always	at	the	top	of	the	page,
but,	on	some	websites,	it	can	appear	as	a	modal-style	popup	after	some	kind	of
add/post	button	is	clicked	on.	We	will	keep	things	simple	and	use	the	Twitter
style	input	field.

Add	the	following	code	to	the	index.php	file:	

The	code	doesn't	require	too	much	description	and	is	very	similar	to	the	contact
form	code	from	Chapter	6,	Creating	a	Contact	Us	Section;	the	biggest	difference
being	that	there's	only	a	single	input	field	instead	of	multiple	fields	for	name,
email	address,	and	so	on.	Let's	take	a	look	at	the	fruits	of	our	clearly	strenuous

labor:	

Looking	good,	but	with	just	the	same	problem	again:	the	button	is	directly	below
the	input	field.	Adding	a	gap	would	help;	it	will	look	more	visually	appealing.

Luckily,	we	have	already	added	an	id	in	the	preceding	code,	called

PostButtonContainer;	simply	add	a	margin	at	the	top,	like	so:	

The	preceding	code	produces	the	following	result:	

As	you	can	see,	this	is	significantly	better	than	before.	Feel	free	to	modify	the
margin	value	as	you	see	fit.

The	input	section	is	now	complete,	very	simple.	Next,	we	will	move	onto	adding
the	main	timeline	feed	using	cards.

Implementing	the	timeline	feed
section
The	timeline	feed	is	pretty	simple,	but	let's	go	over	what	it	will	consist	of:

The	thumbnail	image	of	the	user	who	posted	the	social	message
The	name	of	the	user
The	main	content,	a	mixture	of	text	and	images
The	time	posted
Social	buttons	using	images/icons

Let's	dive	in	and	add	the	following	code	to	your	project:	

Let's	go	through	the	preceding	code:

Line	1	adds	a	row	to	store	the	timeline	feed
Line	2	creates	a	timeline	post	container

Line	3	and	Line	4	create	a	card	similar	to	the	blog	home	page
Line	5	adds	a	simple	text	for	the	simple	blog	post

This	produces	the	following	result:	

Again,	the	same	issue	persists	as	it	has	with	every	other	project:	there	is	no	gap
between	the	share	button	and	the	timeline	post.	We	can	remedy	this	using	a
margin.	First,	add	a	class	of	postContainer	to	the	post	container,	like	so:	

Now,	simply	add	margin	to	the	class	in	the	index.css	file:	

This	now	produces	the	following	result,	which	adds	a	gap	above	each	timeline

post:	

Adding	the	user's	thumbnail
image
Now	that	the	container	is	created,	let's	add	a	thumbnail	image	for	the	user	who
has	posted	the	content.	Add	the	following	code	to	the	post:	

Let's	go	over	the	new	code	line	by	line:

Line	1	adds	a	media	object,	which	allows	complex	and	repetitive
components	to	be	created	especially	when	the	media	is	positioned	inline
with	content
Line	2	adds	an	image	to	act	as	the	post	user's	thumbnail

The	new	code	produces	the	following	result:	

As	you	can	see	in	the	preceding	screenshot,	the	thumbnail	is	too	big,	we	can
rectify	this	by	manually	setting	the	size	of	the	image	in	CSS.	First,	we	will	need
to	add	a	class	of	postThumbnail	,	like	so:	

Next,	add	the	following	style	to	the	index.css	file	to	restrict	the	size	of	the

thumbnail:	

As	can	be	seen	here,	the	thumbnail	looks	a	lot	better:	

The	thumbnail's	height	is	automatically	resized	to	maintain	the
ratio.	Using	a	square	for	thumbnails	is	recommended	to	help	keep
consistency.	Also,	feel	free	to	make	the	thumbnail	smaller	or	larger.

Adding	the	user's
name/username
We	have	a	thumbnail	of	the	user	who	posted	the	content;	it	would	be	awesome	if
we	also	showed	the	user's	name.	This	can	be	simply	done	with	some	basic	text,

as	follows:	

Media	body	is	a	Bootstrap	construct	that	extends	the	base	media	object,	which
allows	a	body	to	be	added	to	our	card.	We	now	have	the	user's	name	displayed	to
the	right	of	the	thumbnail,	as	can	be	witnessed	here:	

Adding	the	post's	timestamp
It	is	very	common	for	social	posts	in	a	timeline	to	have	a	timestamp	that
indicates	when	it	was	posted.	This	is	very	useful,	as	social	networks	are
increasingly	becoming	sources	of	news	for	many	people,	hence	a	timestamp
would	allow	the	user	to	note	how	old	the	content/news	they	are	consuming	is.

Regarding	where	the	timestamp	should	be	situated,	there	are	a	few	different
common	positions	used:

Next	to	the	user's	name,	as	in	Twitter
Below	the	user's	name,	as	in	Facebook
At	the	bottom	of	the	post,	as	in	YouTube

Although	we	are	using	Twitter's	overall	layout,	we	will	use	Facebook's	design
for	positioning	the	timestamp.	It	is	good	to	study	many	different	layouts	and	take
different	aspects	to	form	the	best	layout	possible.	Add	the	following	code	below
the	user's	name	to	display	the	timestamp:	

We	use	the	italics	tag	to	help	distinguish	the	timestamp	from	the	user's	name.
This	produces	the	following	result:	

Adding	the	post's	main	body
We	have	almost	finished	the	social	post	in	the	timeline;	we	just	need	to	add	the

main	body.	We	will	use	text,	as	follows:	

I	have	used	the	Lorem	Ipsum	passage,	but	you	may	use	anything
you	want.

This	produces	the	following	result:	

It	looks	good,	but	that	wretched	gap,	or	lack	of	one,	is	visually	displeasing.	As
usual,	we	can	easily	rectify	this;	first,	add	a	postMainBody	class	to	the	div	we	just

added:	

Now,	add	a	margin	to	the	top	in	the	index.css	file,	like	so:	

As	you	can	see	in	the	following	screenshot,	the	post	looks	a	lot	better:	

I	have	added	more	social	posts;	this	can	easily	be	done	by	duplicating	the
postContainer	class.

	

Going	forward	and	extending	the
timeline
We	are	now	done	with	the	timeline.	Although	we	didn't	implement	all	of	the
features,	we	covered	everything	that	will	allow	you	to	add	extra	features.

Take	a	look	at	the	following	extras	and	have	a	go	yourself:

Add	responsive	images/GIF	to	the	main	body
Add	responsive	videos
Add	social	icons	for	sharing
Vary	the	content	in	each	post

	

	

Summary
In	this	chapter,	we	added	an	awesome	timeline	to	store	all	your	social	posts.	We
leveraged	a	variety	of	basic	HTML	features	and	Bootstrap	features	to	implement
this.	In	the	next	chapter,	we	will	cover	how	to	create	a	new	page	to	display	a
user's	profile	page.

	

Creating	the	User's	Profile
Page
In	this	chapter,	we	will	finish	off	our	social	network	project.	We	will	add	a	page
to	show	a	user's	profile;	this	is	essentially	the	page	that	would	be	available	to
other	members.	This	will	be	used	to	display	unique	content	for	a	particular	user,
such	as	information	about	them	and	content	they	have	posted	and/or	interacted
with.

In	this	chapter,	the	following	topics	will	be	covered:

Bootstrap	jumbotron
Bootstrap	cards
A	multiline	text	input
Form	input
JavaScript	AJAX	form	submission
Debugging	and	testing	responsive	design

	

	

Social	network	profile	examples
There	are	several	social	platforms	to	take	inspiration	from.	Feel	free	to	take	a
look	at	any	favorites	to	discover	ideas	for	a	user	profile	page;	alternatively,
check	out	the	examples	from	the	previous	chapter.

	

What	will	our	social	network	user
page	consist	of?
You're	probably	wondering	what	our	social	media	user	page	will	look	like.	We
will	use	the	Google+	style	layout,	which	was	covered	earlier.	Let's	take	a	look	at
what	the	user	page	consists	of:

Jumbotron:

A	user	banner
The	user's	name
Extra	information	on	the	user,	for	example,	their	follower	count

Small	cards	to	show	what	groups	the	user	is	following:

A	banner	image
A	group	name
The	group	member	count

Regular-sized	cards	to	show	the	user's	posts;	these	will	be	very	similar	to
the	timeline	post	cards

We	used	cards	in	the	timeline	as	well.	Cards	are	one	of	the	many	features	of
Bootstrap	that	you	will	constantly	use,	as	they	provide	a	very	cool	method	for
laying	out	content.	As	usual,	add	your	own	twist	to	them	using	HTML	elements
and	CSS	to	style	them.	Google+'s	user	page	is	responsive,	like	the	rest	of	the
website;	we	too	will	follow	suit.

	

	

	

	

Implementing	the	jumbotron
We	will	continue	with	the	code	from	the	preceding	chapter,	which	extended	the
base	with	a	timeline	on	the	home	page.	We	will	first	need	to	create	a	new	page	to
store	the	user's	profile	page.

Create	a	new	file	in	your	root	directory	called	profile.php.	The	project	structure
will	now	be	as	follows:

CSS

Images

index.php

JS

profile.php

SNIPPETS

Now,	we	have	our	new	file	that	will	contain	all	of	the	user	profile	code.	As	usual,
ensure	that	the	PHP	require	code	lines	are	placed	inside	the	profile.php	file.

	

	

	

Creating	a	basic	jumbotron	with	a
banner	image
Let's	create	a	basic	jumbotron	as	we	did	in	Chapter	4,	Creating	the	Introduction
Section,	along	with	a	banner	image.	Add	the	following	code	to	the	profile.php

file:	

The	code	we	added	is	nothing	new;	we	have	used	this	before.	Let's	take	a	look	at
jumbotron's	result:	

As	usual,	the	code	never	works	the	first	time.	As	can	be	seen	from	the	preceding
screenshot,	there	are	two	problems,	as	follows:

The	image	overflows	and	needs	to	be	restricted	to	the	jumbotron's	width
There	is	padding	at	the	top	and	bottom,	which	is	very	unappealing

Luckily,	these	are	simple	fixes,	and	we	have	actually	done	these	several	times
over.	I	would	recommend	that	you	tackle	them	yourself	before	looking	at	the
steps	that	follow.	First,	we	will	need	to	add	an	id	of	ProfileJumbotron	to	the	jumbotron

div:	

Now,	add	the	following	code	to	the	index.css	file	to	remove	padding,	which	will
remove	the	gray	parts	and	add	a	small	margin,	which	is	optional	(I	like	it):	

This	removes	the	gray	parts,	as	can	be	seen	here:	

However,	the	image	overflows,	as	it	isn't	responsive;	let's	solve	this.	First,	add	an

id	of	ProfileBannerImage	to	the	image:	

Now,	add	the	following	styling	code	to	the	index.css	file	to	restrict	the	width	of

the	image	to	the	jumbotron's	width:	

Now,	the	image	is	nice	and	responsive	and	is	restricted	to	the	size	of	the
jumbotron:	

Adding	the	overlay	text
We	have	a	basic	jumbotron	setup;	let's	add	a	text	overlay	to	display	the	user's
name	and	their	follower	count.	Add	the	following	code	below	the	image:	

Let's	take	a	look	at	our	amazing	jumbotron;	do	you	want	to	put	a	bet	on	whether
or	not	it	will	work	the	first	time?

The	text	is	not	overlaid.	Don't	worry,	no	need	to	pull	your	hair	out.	This	is	easily
rectified,	we	won't	even	have	to	add	any	extra	CSS	code.	We	can	borrow	a	class
from	the	carousel	functionality	within	Bootstrap,	and	simply	enclose	the	text	we
just	added	within	a	div	with	a	class	of	carousel-caption:	

This	produces	the	following	result:	

We	are	now	done	with	the	jumbotron	but	there	are	plenty	of	extras	we	can	add	to
the	jumbotron.	The	following	are	some	examples;	add	these	extras,	which	you
can	implement	as	an	extra	task:

The	user's	thumbnail	image
Buttons:

Edit
About

Extras	text
Positioning	the	overlaid	content

Implementing	the	small	cards
We	will	now	implement	cards	to	showcase	the	user's	interests	and	groups	they
are	following.	This	is	extremely	useful	as	a	snapshot	for	other	users	to	see	what	a
particular	user	is	into	without	having	to	converse	with	them.

We	will	use	cards	again;	this	time	they	will	be	a	lot	smaller,	as	they	don't	need	to
display	as	much	information.	They	simply	need	to	display	the	following	content:

The	banner	image
The	group	name
The	group	member	count

This	will	be	extremely	simple	and	will	reuse	techniques	we	have	already
implemented	over	the	last	few	chapters,	making	this	an	ideal	feature	for	you	to
tackle	yourself.	If	you	want	a	hint,	check	out	the	following	code,	which	goes
after	the	jumbotron	div	container:

There	is	no	need	to	explain	this	code	again,	as	we	have	used	cards	multiple
times.	Also,	this	is	almost	identical	to	the	card	system	used	in	Chapter	7,	Creating
the	Blog	Posts	Homepage,	for	the	blog	home	page,	so	feel	free	to	go	back	if	you
are	unsure	about	anything.

cardContainer	and	cardImage	are	custom	classes,	which	were
implemented	in	Chapter	7,	Creating	the	Blog	Posts	Homepage.

The	only	difference	in	terms	of	HTML	structure	is	the	column	sizes	used.	This
card	system	will	display	four	on	a	single	row	if	the	screen	is	big	enough	instead
of	three,	as	these	cards	aren't	the	main	staple	point	of	the	page.	Also,	the
minimum	number	of	cards	on	a	single	row	will	be	two	on	smaller	screen	sizes.	If
you	need	a	refresher	on	Bootstrap's	grid	system,	then	feel	free	to	return	to	Chapter
2,	What	is	Bootstrap,	Why	Do	We	Use	It?.

Let's	take	a	look	at	the	fruits	of	our	labor:

I	have	added	extra	cards,	which	can	simply	be	achieved	by	duplicating	the	code
within	the	row	div	and	changing	any	information	that	is	needed	for	each	of	the
user's	interests.

Here	are	some	extra	tasks	to	extend	the	interest	cards:

Title
Vary	the	images	and	information	for	each	interest	tile

Implementing	the	large	cards
We	have	almost	completed	the	profile	page;	the	only	thing	left	is	to	add	the
user's	posts.	We	will	actually	reuse	the	code	from	the	home	page,	as	the	posts
will	look	the	same,	the	only	difference	being	the	cards	will	not	be	stored	solely
on	a	single	row	but	two	will	be	stored	on	the	same	row	on	larger	screens.

Before	taking	a	look	at	the	following	code	for	adding	the	postcards,	try	making

the	change	yourself:	

The	following	changes	were	made	to	the	post	cards	from	the	preceding	page:

Added	a	col-lg-6	class	to	the	post	container	to	ensure	that	there	are	two	posts
on	a	single	row	on	larger	screens
Reduced	the	amount	of	text	in	the	post	main	body;	this	was	just	to	ensure
that	the	preceding	code	snapshot	doesn't	occupy	too	much	space

This	all	leads	to	the	following	end	result:

Now,	we	are	done	not	just	with	this	page	but	this	project,	woohoo!	What	we
haven't	done	is	link	this	page	to	the	site's	navigation	and/or	other	page(s);	I	will
leave	that	as	an	extra	task	for	you.

The	preceding	code	only	showed	a	single	card	being	added;	I
duplicated	it	as	we	did	in	the	preceding	chapter	to	demonstrate
what	it	would	look	like	with	more	than	one.

Summary
In	this	chapter,	we	created	the	user's	profile	page;	which	incorporated	a	wide
variety	of	features	that	we	learned	throughout	this	book	thus	far.	In	the	next
chapter,	we	will	kick-start	our	fourth	and	final	project.	I'll	see	you	there.

	

Displaying	Thumbnails	of	Our
Photos
In	this	chapter,	we	will	start	our	fourth	and	final	project:	a	photo	gallery.	This
chapter	will	cover	creating	the	home	page	as	usual,	only	this	time	the	home	page
will	be	used	to	display	small	previews	of	photos.	We	will	incorporate	many	of
the	skills	that	we	learned	over	the	previous	chapters	and	some	cool	new	ones.

The	topics	to	be	covered	in	this	chapter	are	as	follows:

Bootstrap	image	showcase
CSS	styling
Bootstrap	buttons
Bootstrap	pagination
Debugging	and	testing	responsive	design

	

	

	

Photo	gallery	home	page
examples
Let's	go	through	some	examples	of	photo	gallery	home	pages.	There	are	a
plethora	of	photo	galleries	to	choose	to	get	inspiration	from.	I'm	sure	that	you
have	your	own	favorites,	and	I	would	always	recommend	that	you	check	them
out	as	well	if	they	are	not	covered	over	the	next	few	pages.

	

	

	

	

Pinterest
Pinterest	is	the	one	of	the	most	successful	photo	galleries	in	the	world,	and	most
likely	you	have	already	visited	it.	It	is	definitely	one	to	take	inspiration	from.
Pinterest	uses	a	masonry	–style	effect	to	lay	out	the	images	using	cards.	The
website	is	responsive	on	medium	to	extra	large	screen	sizes.	It	makes	full	use	of
the	browser's	width	using	a	fluid-like	design.

Let's	take	a	look	at	its	website	(https://www.pinterest.co.uk/):

https://www.pinterest.co.uk/

	

	

	

	

9GAG
9GAG	is	a	very	popular	website	for	funny	images.	It's	not	the	conventional
photo	gallery,	but	a	blend	of	Facebook	and	a	normal	photo	gallery.	9GAG	is	not
responsive,	one	of	the	reasons	being	that	they	have	an	app	that	they	would	like
users	to	download.	Never	make	this	mistake;	always	ensure	that	your	website	is
fully	responsive	as	well,	because	some	users	won't	want	to	download	an	extra
app.

Let's	take	a	look	at	its	website	(https://9gag.com/):

https://9gag.com/

	

	

	

	

Google	Photos
Google	keeps	on	giving.	It	pretty	much	has	a	platform	for	every	idea.	However,
Google	Photos	isn't	like	a	conventional	photo	gallery	in	that	it	is	private	and
primarily	designed	to	store	and	showcase	your	own	photos.	It	has	an	excellent
and	responsive	layout	that	borrows	from	the	greatest	Google	websites	and
provides	simplicity.

Let's	take	a	look	at	its	website	link	(https://photos.google.com/):

https://photos.google.com/

	

	

	

GIPHY
GIPHY	is	very	much	like	9GAG.	It	provides	images,	or	more	specifically	GIFs,
for	community	amusement.	However,	it	doesn't	provide	a	responsive	layout,
which	is	a	shame.	The	interface	is	minimal	with	no	sidebar,	captions,	or	cards
like	Pinterest's	design.

Let's	take	a	look	at	its	website	(https://giphy.com/):

https://giphy.com/

	

Vent
Vent	is	a	fairly	new	and	relatively	unheard	of	photo	gallery.	It	also	provides	the
feature	of	allowing	text-based	posts,	so	it	is	unique	in	that	fashion.	It	uses	a	fully
responsive	website	along	with	cards	to	display	content	tagged	with	an	emotion.

Let's	take	a	look	at	its	website	(http://www.ventit.co/):

	

	

	

http://www.ventit.co/

	

What	will	our	photo	gallery	home
page	consist	of?
You're	probably	wondering	what	our	photo	gallery	sidebar	will	look	like.	It	will
contain	the	following:

Title	for	the	page
Thumbnails/images	in	the	form	of	files
Pagination	(navigation	for	multipage	thumbnails)

Photo	galleries	are	usually	very	simple,	and	ours	will	be	no	different.	We	will
omit	a	sidebar,	but	you	can	easily	use	the	code	from	the	previous	project	to
incorporate	a	sidebar	into	our	photo	gallery	and	make	it	look	more	like	Google
Photos.

	

	

	

	

Implementing	the	thumbnails
Before	we	can	start,	we	will	need	a	base	to	work	with.	Luckily,	in	Chapter	7,
Creating	the	Blog	Posts	Home	Page,	we	did	just	this;	we	stripped	away	all	code
specific	to	the	first	project	and	used	that	as	our	base	for	the	blog.	Now,	we	can
use	that	same	base	for	the	photo	gallery.	The	code	files	can	be	accessed	easily
via	the	GitHub	repository.

	

	

	

Adding	the	home	page	title
There	is	nothing	special	about	the	title	we	are	going	to	add	and	it	is	extremely
simple	to	implement,	as	demonstrated	here:	

We	aren't	doing	anything	new	in	the	preceding	code;	we	are	just	creating	a
simple	container	with	a	row.	Inside,	we	have	a	container	for	the	title	that	spans
all	12	columns	and	centers	the	content	with	it,	ensuring	that	our	title	will	always
be	in	the	center.

This	code	produces	the	following	result:	

Adding	the	picture	thumbnails
Now,	we	will	add	the	main	part	of	our	website,	the	array	of	thumbnails,	which
when	clicked	enlarge	to	show	the	image	in	all	its	glory.	Add	the	following	code
below	the	previously	added	code	snippet:	

In	the	preceding	code	snippet,	first	we	added	a	row,	nothing	special	there.	Next,
we	added	a	div	to	contain	the	thumbnail	image.	It	has	a	variety	of	breakpoints	to
aid	the	layout;	this	ensures	that	items	are	always	legible	on	all	screen	sizes.
Finally,	we	added	an	image	with	a	Bootstrap	thumbnail	image	class,	which	is
designed	to	be	responsive,	and	put	a	border	around	it.	Let's	take	a	look	at	our

result:	

I	have	added	extra	thumbnails	to	help	showcase	what	it	would	look	like.	This
can	be	simply	achieved	by	duplicating	the	div	that	contains	the	image,	not	the
row	div.	You	would	obviously	want	to	change	the	images	for	more	variety	and
more	importantly	authenticity;	do	this	as	an	extra	task	to	see	what	it	looks	like.	I
can	assure	you	that	it	will	look	epic.

There	is	one	little	problem,	which	you	guessed	correctly.	There	is	no	gap
between	the	tiles	on	the	top	and	bottom;	we	can	easily	overcome	this	by	adding	a
margin	to	the	top	and	bottom	of	each	image.	First,	add	a	class	of

thumbnailContainer,	as	follows:	

Now,	add	the	following	style	code	to	index.css,	which	applies	a	margin	to	the	top

and	bottom	of	the	container:	

Let's	take	a	look	at	our	page	now:	

Now	our	website	is	much	better;	the	gaps	make	all	the	difference.

Adding	pagination
Pagination	is	completely	new	to	us,	so	what	is	it?	Pagination	simply	provides
links	that	indicate	a	series	of	related	content	that	exists	across	multiple	pages.
This	is	typically	used	as	means	to	improve	performance	instead	of	potentially
showing	millions	of	posts	on	a	single	page.

Take	a	look	at	the	screenshot	of	pagination	at	work:	

The	number	of	pages	cannot	be	determined	in	advance.	They	would
be	dynamically	calculated,	depending	on	the	amount	of	content
stored	in	a	database.

The	preceding	screenshot	is	from	ventit.co,	which	was	provided	as	an	example
earlier	on.	Implementing	pagination	couldn't	be	simpler;	add	the	following	code
after	the	thumbnail	grid	row:	

Let's	go	through	the	code	line	by	line:

Line	1	adds	a	row	like	we	have	done	many	times	before
Line	2	adds	a	div	to	contain	the	pagination,	which	will	span	all	12
columns	on	all	screen	sizes
Line	3	creates	a	navigation	system	for	the	pagination

Line	4	creates	an	unordered	list	with	the	pagination	class,	which	will
contain	each	button	for	the	pagination	navigation
Line	5	to	Line	9	add	the	individual	buttons

http://ventit.co/

You	would	want	to	link	the	buttons	to	the	appropriate	pages	using
the	href	in	a	working	example,	which	has	a	backend	as	well.

Let's	take	a	look	at	what	it	looks	like:	

We	added	the	text-center	class,	so	why	is	the	pagination	not	centered?	Well,	it
requires	a	different	display	style.	To	change	the	display	style,	first	add	an	id	of
PaginationList,	as	follows:	

Now,	add	the	following	CSS	code	to	the	index.css	file:	

The	new	display	layout	produces	this	new	result:	

We	are	now	done	with	the	pagination	system	and	can	move	on	to	the	final
chapter	of	this	project	and	book.

Pagination	can	be	customized	in	a	variety	of	ways	using	arrows,
instead	of	the	Previous	and	Next	text	buttons	to	highlight	and
disable	buttons;	more	information	can	be	found	on	the	Bootstrap
website	at	https://v4-alpha.getbootstrap.com/components/pagination/

https://v4-alpha.getbootstrap.com/components/pagination/

Summary
In	this	chapter,	we	started	our	fourth	and	final	project:	the	photo	gallery.	We
implemented	the	home	page,	which	displayed	a	grid	of	thumbnails.

The	next	chapter	will	cover	opening	the	images	up	when	they	are	clicked	on.

	

Opening	Images	Using	a	Light
Box
In	this	chapter,	we	will	finish	our	final	project,	the	photo	gallery.	This	chapter
will	cover	extending	the	gallery	thumbnails	on	the	home	page.	We	won't	create	a
new	page,	but	instead	show	extra	contextual	information.	We	will	use	some	cool
features	to	bring	our	light	box	to	life,	allowing	full	viewing	of	the	images	that
were	previously	only	previewed	to	us	via	the	grid.

The	topics	covered	in	this	chapter	are	as	follows:

Bootstrap	modals
Form	input
Multiline	text	input
CSS	page	darkening
Debugging	and	testing	responsive	design

	

	

	

Light	box	examples
Let's	go	through	some	examples	of	excellent	light	boxes.	There	are	a	plethora	of
light	boxes	to	choose	to	get	inspiration	from.	I'm	sure	that	you	have	your	own
favorites,	and	I	would	always	recommend	that	you	check	them	out	as	well	if
they	are	not	covered	over	the	next	few	pages.

	

	

	

Pinterest
Pinterest	is	one	of	the	most	successful	photo	galleries	in	the	world,	and	most
likely	you	have	already	visited	it—it	is	definitely	one	to	take	inspiration	from.
Pinterest	hides	all	the	other	content	to	showcase	the	image.	The	light	box	is	fully
responsive:

Its	website	is	https://www.pinterest.co.uk/

https://www.pinterest.co.uk/

Google	Photos
Google	Photos	opens	the	image	in	full	to	maximize	the	visual	effect.	Google	also
offers	some	extra	editing	buttons,	as	it	is	a	private	gallery	and	not	a	public	one,
so	certain	aspects	will	vary	from	other	photo	galleries:

Its	website	is	https://photos.google.com/

https://photos.google.com/

Dan	Kennedy
Dan	Kennedy	is	an	amazing	photographer,	and	his	website	is	an	example	of
minimalism	done	right.	The	visual	esthetic	is	very	pleasing	and	also	very
effective	in	conveying	information	to	the	user:

Its	website	is	http://www.danielkennedy.com/

http://www.danielkennedy.com/

Salter
Salter	is	really	cool	in	that	it	doesn't	remove/hide	all	the	website's	content,	but
instead	incorporates	the	sidebar	and	merely	maximizes	the	image	to	cover	the
thumbnails	and	not	the	entire	page:

Its	website	is	https://www.jefferysalter.com/

https://www.jefferysalter.com/

	

Arild	Danielsen	Photographer
Arild	Danielsen	Photography	is	similar	to	the	other	examples	we	have	covered,
but	with	a	twist.	Open	the	page	up	hover	over	an	open	image,	and	see	what
happens.	The	image	zooms	in	and	allows	you	to	pan	using	the	mouse,	which	is
really	cool.

Take	a	look	at	its	website	at	http://www.danielsenphoto.com/portfolio_editorial.html

	

	

http://www.danielsenphoto.com/portfolio_editorial.html

	

	

What	will	our	light	box	consist
of?
First	of	all,	what	exactly	is	a	light	box	outside	of	it's	photography	origins?	It
sounds	extremely	cool,	almost	as	cool	as	a	jumbotron.	A	light	box	is	an
extremely	simple	concept.	When	an	object	is	clicked	on,	usually	a	smaller	object
in	the	midst	of	many	like	itself,	displayed	as	a	preview,	the	object	opens	up	to
showcase	itself	in	all	its	glory.	In	the	case	of	our	photo	gallery,	when	the
thumbnail	in	the	grid	is	clicked,	the	image	will	open	up	to	fill	most,	if	not	all,	of
the	browser.

You're	probably	wondering	what	our	light	box	will	look	like;	it	will	contain	the
following:

A	full–size	image
A	close	button
Text	to	briefly	describe	the	image	and	provide	some	contextual	information
to	the	user

	

	

	

Implementing	the	light	box
We	will	continue	with	the	code	from	the	preceding	chapter	to	finish	our	photo
gallery	with	an	awesome	light	box.

We	will	use	a	Bootstrap	feature	called	modals,	which	is	an	awesome	and	simple
way	of	opening	a	box	within	the	website;	this	is	what	will	display	our	image	to
the	user.

	

	

	

Adding	a	simple	modal
First,	we	will	open	an	empty	modal	when	the	thumbnail	is	clicked	from	the
gallery.	Add	the	following	code	after	all	other	HTML	code,	even	outside	of	the

container:	

Firstly,	I'm	sure	you're	wondering	why	we	added	it	outside	of	the	container	and
not	within	it,	considering	everything	thus	far	in	the	book	has	been	within.	The
main	reason	for	this	is	due	to	the	code	not	being	part	of	the	main	visible	content,
so	it	doesn't	need	to	be	within	the	container.	It	can	be	placed	within	the
container,	but	honestly	there	is	no	need.	Before	we	go	over	what	each	line	of
code	does,	let's	take	a	look	at	the	end	result:	

No,	you're	not	mistaken;	the	website	looks	exactly	the	same.	This	is	because	the
purpose	of	a	modal	is	to	remain	hidden	until	triggered,	at	which	point	it	will
appear	and	take	away	focus	from	the	rest	of	the	website	by	making	it	slightly
gray/dark.	So,	how	do	we	trigger	the	modal?	Well,	it	will	be	triggered	by
clicking	on	a	thumbnail	image	from	the	grid;	however,	as	of	now	this	does	not
work,	as	we	haven't	implemented	a	trigger.	Before	we	do	so,	let's	go	over	the
code	we	previously	added:

Line	1	creates	a	container	for	the	modal	and	sets	it	to	fade	when	showing
and	hiding	itself
Line	2	and	Line	3	set	up	the	inner	container	to	actually	store	the	modal
Line	4	creates	a	header	section	to	provide	a	title	for	the	modal	and	a	button
to	close	it

Now	that	we	have	covered	what	the	code	does,	let's	make	the	thumbnails	trigger
the	modal	when	clicked.	Simply	extend	the	thumbnail	image	with	the	following

properties:	

These	properties	specify	what	type	of	content	is	being	triggered	based	on	an	ID,
which	is	our	modal.

Each	thumbnail	image	will	need	to	be	updated	like	this.	Luckily,	the
code	is	the	same,	and	a	new	modal	doesn't	need	to	be	created	for
each	new	thumbnail	image.

When	one	of	the	thumbnail	images	from	the	grid	is	clicked,	the	following
appears:	

Adding	an	image	to	the	modal
The	main	reason	we	are	implementing	a	modal	is	to	showcase	the	image	the	user
has	clicked.	However,	at	the	moment	nothing	but	a	title	is	displayed;	we	will
keep	that	as	it	is	also	useful,	but	what	we	really	need	is	an	image.	Luckily	for	us,
it	is	extremely	simple;	add	the	following	code	to	the	modal:	

I	think	you	can	guess	what	the	div	we	added	does;	it	provides	a	section	to	put	the
main	content	for	the	modal	in.	For	our	purposes,	it	will	just	be	an	image,	but	I
recommend	as	an	extra	task	that	you	add	some	text	to	further	describe	the	image;
you	could	also	implement	a	footer	for	extra	content.	You	can	check	out	all	the
features	of	Bootstrap	modals	at	https://v4-alpha.getbootstrap.com/components/modal/

Inside	of	the	body,	we	will	simple	add	an	image	with	the	thumbnail	class,	which
ensures	that	it	is	responsive	and	fills	the	width	of	its	parent	container	while
maintaining	its	native	aspect	ratio.	Let's	take	a	look	at	the	end	result:	

https://v4-alpha.getbootstrap.com/components/modal/

It	looks	cool,	but	a	light	box	should	showcase	the	image	in	all	its	glory—I	think
the	modal	should	be	bigger	and	better.	As	per	usual,	Bootstrap	keeps	on	giving;
there	is	a	class	we	can	add	to	the	modal	dialog	div	to	change	its	size.	Add	a	class

of	modal-lg,	as	follows:	

If	you	want	to	make	the	modal	smaller,	you	can	add	a	class	of	modal-
sm.

This	is	what	the	larger	modal	looks	like:	

As	you	can	see	in	the	preceding	screenshot,	the	modal	being	bigger	really	makes
our	light	box	stand	out	to	the	user.	It	fully	expresses	the	image	in	all	its	glory.

Making	the	modal	content	appear
dynamically
Technically,	we	are	done	with	the	modal	and	the	book.	Like	I	said,	technically
we	could	leave	it	as	it	is,	but	let's	make	it	more	dynamic.	At	the	moment,	when
we	click	on	a	thumbnail	image,	the	same	modal	with	the	same	image	and
information	is	displayed.	We	don't	want	multiple	modals,	as	that	leads	to	a	lot	of
redundancy.	This	is	something	we	have	tried	to	avoid	throughout	this	book;	we
cannot	give	up	this	ideology	now	that	we	stand	near	the	finishing	line.

That's	where	dynamic	content	comes	into	play.	We	will	use	JavaScript	to
perform	the	following	tasks:

1.	 Check	when	a	thumbnail	image	has	been	clicked	(override	the	default
functionality)

2.	 Retrieve	the	thumbnail's	data:
Image
Title	(to	be	added	to	the	image)
Anything	else	you	may	want

3.	 Replace	the	content	of	the	modal
4.	 Show	the	modal

Using	these	steps,	we	will	be	able	to	dynamically	switch	the	modal's	content	nice
and	seamlessly.	All	of	our	thumbnails	have	the	same	image—that's	fine,	because
in	a	production	website,	this	would	not	be	the	case,	and	the	code	we	will	add	will
provide	us	with	the	means	of	handling	the	different	images	dynamically	and
accordingly.

First,	we	will	remove	all	data–toggle	and	targets	from	every	image.	This	might
sound	counter-intuitive,	as	it	was	the	very	code	that	opened	the	modal.	This
hardcoded	method	is	great	for	modals	that	are	static,	but	we	want	to	dynamically
change	the	content.	So,	we	will	override	the	functionality	in	JavaScript	by
detecting	when	an	image	has	been	clicked	and	opening	the	modal	with	its
attributes.

Consider	all	images	in	the	following	code:	

Now,	make	the	following	changes:	

The	modal	does	not	appear	when	you	click	on	any	of	the	thumbnails.	Now,	add	a

class	of	thumbnailImage	to	each	image,	like	so:	

This	will	act	as	the	handle	for	detecting	the	click	in	JavaScript.	Before	we
implement	the	JavaScript,	we	have	two	more	handles	to	add.	These	belong	to	the
modal	and	allow	us	to	manipulate	the	title	and	image.	Add	the	following	ids	to

the	modal:	

Now,	open	the	index.js	file	and	add	the	following	code:	

Let's	go	through	the	new	code	line	by	line:

Line	1	checks	whether	the	thumbnail	image	is	clicked;	if	so,	it	runs	the	next
few	lines	of	code
Line	3	retrieves	the	image	URL	of	the	thumbnail	from	the	source	attribute
Line	5	sets	the	modal	image	source	URL	to	the	image	URL	retrieved	from
the	thumbnail
Line	7	shows	the	modal

It	is	important	to	do	all	changes	first,	then	show	the	modal.
Otherwise,	elements	may	quickly	change	while	the	modal	is	loaded,
which	isn't	a	very	good	user	experience.

We	will	now	dynamically	retrieve	the	image	URL	and	update	the	modal
accordingly.	You	might	be	wondering	where	is	the	title	update;	I	will	leave	that
as	an	extra	task	for	you.

With	this,	the	fourth	and	final	project	has	been	completed.	As	always,
experiment	with	the	code	to	truly	see	what	it	does.

Summary
In	this	chapter,	we	finished	the	fourth	and	final	project	by	implementing	an
awesome	light	box	to	showcase	the	gallery's	images.	This	was	the	final	chapter.
Thank	you	for	taking	this	journey	with	me	through	four	amazing	and	wonderful
projects.	I	enjoyed	every	moment	of	writing	this	book	and	also	learned	a	lot
myself.	I	hope	to	see	you	in	my	future	work.

	

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Conventions used

	Reader feedback
	Customer support
	Errata
	Piracy
	Questions

	What is Responsive Web Design?
	Responsive design philosophy
	Responsive design principles
	Responsive versus adaptive
	Breakpoints
	Relative units
	Maximum and minimum values
	Nested objects
	Mobile or desktop first
	Bitmaps versus vectors

	Responsive grids and columns
	Summary

	What is Bootstrap, Why Do We Use It?
	Brief history of Bootstrap
	Why use Bootstrap?
	Why Bootstrap?

	Bootstrap's grid system
	Basics
	Usage and examples
	Equal width columns example
	Multi-row, equal-width columns example
	Multi-row, equal-width columns without multiple rows example
	Differently sized columns
	Differently sized columns with screen size restrictions
	Mixing and matching
	Vertical alignment
	Horizontal alignment
	Column offsetting

	Grid wrap up

	Bootstrap components
	Summary

	Reusable Project Template
	What is a reusable project template?
	Development environment prerequisites
	Creating our reusable project template
	Simple Bootstrap example
	Abstraction
	Extending the header
	Extending the footer
	Extending the main body

	Troubleshooting
	PHP errors
	CSS not applying

	Summary

	Creating the Introduction Section
	What is a single-page website?
	Single-page examples
	Android KitKat promotional homepage
	GoldSquare
	Anthony Designer
	Richman

	Implementing our introduction section
	What is a jumbotron?
	Implementing a basic jumbotron
	Adding an image to the jumbotron
	Combining text and images in a jumbotron

	Anchoring a section to the navigation bar
	Animating our navigation bar anchor
	Fixing footer visibility and the location problem

	Placing the header on top
	Changing the current button selected

	Common pitfalls
	Navigation bar height variance on mobile devices
	Navigation bar button anchoring

	Summary

	Creating a Generic Reusable Single Page Section
	Different sections in single page websites
	Single page section examples
	Contact form
	About us
	Projects/work
	Opening times

	Implementing our generic reusable single page section
	What will the Our Team section contain?
	Creating the Our Team section container
	Anchoring the Team section to the navigation bar
	Adding the team's pictures
	Team member info text
	Team member social links

	Summary

	Creating a Contact Us Section
	Contact Us examples for single page websites
	Richman
	Bueno
	This also
	Design museum
	Choice screening

	Implementing the Contact Us section
	What will the Contact Us section contain?
	Creating the Contact Us section container
	Anchoring the Contact Us section to the navigation bar
	Adding the contact form

	Summary

	Creating the Blog Posts Home Page
	Blog examples
	TechCrunch
	Gawker
	Microsoft News
	Johnny Cupcakes
	TESCO Living

	Setting up the base project
	Removing all unnecessary files
	Refactoring the index.css file
	Refactoring the index.php file
	Refactoring the HEADER.php snippet file
	Refactoring the index.js file

	What will our blog home page look like?
	Implementing the blog home page section
	Implementing the image slider
	Simple image slider
	Adding back and forward buttons to the slider

	Carousel indicators
	Captioning our carousel

	Implementing the blog posts
	Adding cards

	Summary

	Creating the Blog Posts Page
	Blog post page examples
	TechCrunch
	Gawker
	Microsoft News
	Johnny Cupcakes
	Tesco Living

	What will our blog post page consist of?
	What does the post content consist of?
	What does the popular and recommended sidebar consists of?
	Implementing the blog post page
	Implementing the post's main content
	Adding the blog post title and banner image
	Adding the snapshot paragraph
	Adding the body
	More useful links

	Implementing the sidebar
	Further extending the blog
	Summary

	Adding a Sidebar to the Social Network
	Social network sidebar examples
	Facebook
	Google+
	YouTube
	Minds
	Myspace

	What will our social network sidebar consist of?
	Implementing the sidebar
	Implementing the burger button
	Implementing the sidebar HTML side
	Implementing the sidebar CSS side

	Summary

	Creating the Home page in Our Social Network
	Social network timeline examples
	Facebook
	Google+
	YouTube
	Twitter
	Medium

	What will our social network timeline consist of?
	Implementing the timeline
	Implementing the input section
	Implementing the timeline feed section
	Adding the user's thumbnail image
	Adding the user's name/username
	Adding the post's timestamp

	Adding the post's main body
	Going forward and extending the timeline

	Summary

	Creating the User's Profile Page
	Social network profile examples
	What will our social network user page consist of?
	Implementing the jumbotron
	Creating a basic jumbotron with a banner image
	Adding the overlay text
	Implementing the small cards
	Implementing the large cards
	Summary

	Displaying Thumbnails of Our Photos
	Photo gallery home page examples
	Pinterest
	9GAG
	Google Photos
	GIPHY
	Vent

	What will our photo gallery home page consist of?
	Implementing the thumbnails
	Adding the home page title
	Adding the picture thumbnails
	Adding pagination
	Summary

	Opening Images Using a Light Box
	Light box examples
	Pinterest
	Google Photos
	Dan Kennedy
	Salter
	Arild Danielsen Photographer

	What will our light box consist of?
	Implementing the light box
	Adding a simple modal
	Adding an image to the modal
	Making the modal content appear dynamically

	Summary

